Joint Approach for Vehicle Routing Problems Based on Genetic Algorithm and Graph Convolutional Network

计算机科学 车辆路径问题 数学优化 遗传算法 图形 算法 编码 布线(电子设计自动化) 理论计算机科学 数学 机器学习 计算机网络 生物化学 化学 基因
作者
Dingding Qi,Zhao Ying-jun,Zhengjun Wang,Wei Wang,Li Pi,Longyue Li
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (19): 3144-3144 被引量:3
标识
DOI:10.3390/math12193144
摘要

The logistics demands of industries represented by e-commerce have experienced explosive growth in recent years. Vehicle path-planning plays a crucial role in optimization systems for logistics and distribution. A path-planning scheme suitable for an actual scenario is the key to reducing costs and improving service efficiency in logistics industries. In complex application scenarios, however, it is difficult for conventional heuristic algorithms to ensure the quality of solutions for vehicle routing problems. This study proposes a joint approach based on the genetic algorithm and graph convolutional network for solving the capacitated vehicle routing problem with multiple distribution centers. First, we use the heuristic method to modularize the complex environment and encode each module based on the constraint conditions. Next, the graph convolutional network is adopted for feature embedding for the graph representation of the vehicle routing problem, and multiple decoders are used to increase the diversity of the solution space. Meanwhile, the REINFORCE algorithm with a baseline is employed to train the model, ensuring quick returns of high-quality solutions. Moreover, the fitness function is calculated based on the solution to each module, and the genetic algorithm is employed to seek the optimal solution on a global scale. Finally, the effectiveness of the proposed framework is validated through experiments at different scales and comparisons with other algorithms. The experimental results show that, compared to the single decoder GCN-based solving method, the method proposed in this paper improves the solving success rate to 100% across 15 generated instances. The average path length obtained is only 11% of the optimal solution produced by the GCN-based multi-decoder method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
summerke完成签到,获得积分10
刚刚
呆瓜姜完成签到,获得积分20
1秒前
2秒前
华仔应助Zenglongying采纳,获得10
2秒前
2秒前
852应助小谢采纳,获得10
5秒前
在水一方应助快乐的伟诚采纳,获得10
5秒前
summerke发布了新的文献求助10
6秒前
tian发布了新的文献求助10
6秒前
jj完成签到,获得积分10
6秒前
万能图书馆应助森花采纳,获得10
7秒前
idemipere发布了新的文献求助30
7秒前
kiu完成签到 ,获得积分10
9秒前
善学以致用应助Tammy采纳,获得10
11秒前
11秒前
12秒前
高兴的彩虹完成签到,获得积分10
12秒前
15秒前
pugongying发布了新的文献求助10
15秒前
15秒前
现代的诗槐完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
mark完成签到,获得积分10
18秒前
桐桐应助简单面包采纳,获得10
20秒前
20秒前
Ava应助khaosyi采纳,获得10
20秒前
小谢发布了新的文献求助10
21秒前
lixiangrui110完成签到,获得积分10
23秒前
sure发布了新的文献求助10
23秒前
jingsihan完成签到,获得积分10
25秒前
毒翼完成签到,获得积分10
26秒前
温暖汽车发布了新的文献求助30
26秒前
27秒前
七夜完成签到,获得积分10
28秒前
back you up应助海心采纳,获得30
29秒前
刻苦的秋柔完成签到,获得积分10
30秒前
齐半青完成签到,获得积分10
32秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
What’s the Evidence? An Investigation into Teacher Quality 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3701555
求助须知:如何正确求助?哪些是违规求助? 3251755
关于积分的说明 9876024
捐赠科研通 2963720
什么是DOI,文献DOI怎么找? 1625252
邀请新用户注册赠送积分活动 769908
科研通“疑难数据库(出版商)”最低求助积分说明 742623