A Lightweight Strip Steel Surface Defect Detection Network Based on Improved YOLOv8

计算机科学 特征(语言学) 过程(计算) 特征提取 一般化 人工智能 模式识别(心理学) 曲面(拓扑) 数学 数学分析 几何学 哲学 语言学 操作系统
作者
Yuqun Chu,Xiaoyan Yu,Xianwei Rong
出处
期刊:Sensors [MDPI AG]
卷期号:24 (19): 6495-6495
标识
DOI:10.3390/s24196495
摘要

Strip steel surface defect detection has become a crucial step in ensuring the quality of strip steel production. To address the issues of low detection accuracy and long detection times in strip steel surface defect detection algorithms caused by varying defect sizes and blurred images during acquisition, this paper proposes a lightweight strip steel surface defect detection network, YOLO-SDS, based on an improved YOLOv8. Firstly, StarNet is utilized to replace the backbone network of YOLOv8, achieving lightweight optimization while maintaining accuracy. Secondly, a lightweight module DWR is introduced into the neck and combined with the C2f feature extraction module to enhance the model’s multi-scale feature extraction capability. Finally, an occlusion-aware attention mechanism SEAM is incorporated into the detection head, enabling the model to better capture and process features of occluded objects, thus improving performance in complex scenarios. Experimental results on the open-source NEU-DET dataset show that the improved model reduces parameters by 34.4% compared with the original YOLOv8 algorithm while increasing average detection accuracy by 1.5%. And it shows good generalization performance on the deepPCB dataset. Compared with other defect detection models, YOLO-SDS offers significant advantages in terms of parameter count and detection speed. Additionally, ablation experiments validate the effectiveness of each module.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助司空蓝采纳,获得10
1秒前
xhh完成签到,获得积分10
2秒前
4秒前
淡定的疾发布了新的文献求助10
5秒前
5秒前
完美世界应助wx采纳,获得10
6秒前
崔崔完成签到,获得积分10
6秒前
闪耀星星发布了新的文献求助10
7秒前
科研通AI2S应助格子布采纳,获得10
10秒前
半圭为璋发布了新的文献求助10
10秒前
Liccyer完成签到,获得积分10
10秒前
元谷雪应助ddak采纳,获得10
12秒前
14秒前
田様应助科研通管家采纳,获得10
16秒前
琉璃苣应助科研通管家采纳,获得20
16秒前
16秒前
琉璃苣应助科研通管家采纳,获得10
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
16秒前
不配.应助sxc采纳,获得20
17秒前
17秒前
18秒前
wanci应助追梦采纳,获得10
21秒前
叶白山发布了新的文献求助10
21秒前
helinchen完成签到,获得积分10
22秒前
22秒前
Estrella应助单身的幼菱采纳,获得10
23秒前
23秒前
ddak完成签到,获得积分20
24秒前
小马哥发布了新的文献求助10
24秒前
26秒前
Shuhe_Gong完成签到 ,获得积分10
27秒前
半圭为璋完成签到,获得积分10
28秒前
重要的天空完成签到,获得积分10
30秒前
淡淡宛完成签到 ,获得积分10
32秒前
32秒前
35秒前
36秒前
36秒前
科研通AI2S应助czt采纳,获得10
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143731
求助须知:如何正确求助?哪些是违规求助? 2795219
关于积分的说明 7813671
捐赠科研通 2451210
什么是DOI,文献DOI怎么找? 1304353
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601400