A Lightweight Strip Steel Surface Defect Detection Network Based on Improved YOLOv8

计算机科学 特征(语言学) 过程(计算) 特征提取 一般化 人工智能 模式识别(心理学) 曲面(拓扑) 数学 几何学 语言学 操作系统 数学分析 哲学
作者
Yuqun Chu,Xiaoyan Yu,Xianwei Rong
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (19): 6495-6495
标识
DOI:10.3390/s24196495
摘要

Strip steel surface defect detection has become a crucial step in ensuring the quality of strip steel production. To address the issues of low detection accuracy and long detection times in strip steel surface defect detection algorithms caused by varying defect sizes and blurred images during acquisition, this paper proposes a lightweight strip steel surface defect detection network, YOLO-SDS, based on an improved YOLOv8. Firstly, StarNet is utilized to replace the backbone network of YOLOv8, achieving lightweight optimization while maintaining accuracy. Secondly, a lightweight module DWR is introduced into the neck and combined with the C2f feature extraction module to enhance the model’s multi-scale feature extraction capability. Finally, an occlusion-aware attention mechanism SEAM is incorporated into the detection head, enabling the model to better capture and process features of occluded objects, thus improving performance in complex scenarios. Experimental results on the open-source NEU-DET dataset show that the improved model reduces parameters by 34.4% compared with the original YOLOv8 algorithm while increasing average detection accuracy by 1.5%. And it shows good generalization performance on the deepPCB dataset. Compared with other defect detection models, YOLO-SDS offers significant advantages in terms of parameter count and detection speed. Additionally, ablation experiments validate the effectiveness of each module.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千秋入画发布了新的文献求助10
刚刚
飞飞加油呀完成签到,获得积分10
刚刚
汉堡包应助22采纳,获得10
刚刚
香蕉觅云应助zz采纳,获得10
刚刚
慕青应助恨安采纳,获得10
1秒前
沉静的万天完成签到 ,获得积分10
1秒前
xx发布了新的文献求助10
1秒前
SZK完成签到,获得积分10
2秒前
张舒涵完成签到,获得积分10
2秒前
2秒前
3秒前
kathy完成签到,获得积分10
5秒前
ypp发布了新的文献求助10
5秒前
南兮发布了新的文献求助10
5秒前
thisky完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
松谦发布了新的文献求助10
6秒前
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
7秒前
yar应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
朱建军应助科研通管家采纳,获得10
7秒前
yar应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
8秒前
自觉灵凡发布了新的文献求助10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
8秒前
朱建军应助科研通管家采纳,获得10
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635