外延
兴奋剂
电子迁移率
电子
材料科学
凝聚态物理
光电子学
物理
纳米技术
核物理学
图层(电子)
作者
Carl Peterson,Arkka Bhattacharyya,Kittamet Chanchaiworawit,Rachel Kahler,Saurav Roy,Yizheng Liu,Steve Rebollo,Anna Kallistová,Tom Mates,Sriram Krishnamoorthy
摘要
We report on metalorganic chemical vapor deposition (MOCVD) growth of controllably Si-doped 4.5 μm thick β-Ga2O3 films with electron concentrations in the 1015 cm−3 range and record-high room temperature Hall electron mobilities of up to 200 cm2/Vs, reaching the predicted theoretical maximum room temperature phonon scattering-limited mobility value for β-Ga2O3. Growth of the homoepitaxial films was performed on Fe-doped (010) β-Ga2O3 substrates at a growth rate of 1.9 μm/h using TEGa as the Gallium precursor. To probe the background electron concentration, an unintentionally doped film was grown with a Hall concentration of 3.43 × 1015 cm−3 and Hall mobility of 196 cm2/Vs. Growth of intentionally Si-doped films was accomplished by fixing all growth conditions and varying only the silane flow, with controllable Hall electron concentrations ranging from 4.38 × 1015 to 8.30 × 1015 cm−3 and exceptional Hall mobilities ranging from 194 to 200 cm2/Vs demonstrated. C-V measurements showed a flat charge profile with the ND+–NA− values correlating well with the Hall-measured electron concentration in the films. SIMS measurements showed the silicon atomic concentration matched the Hall electron concentration with carbon and hydrogen below detection limit in the films. The Hall, C-V, and SIMS data indicate the growth of high-quality 4.5 μm thick β-Ga2O3 films and controllable doping into the mid 1015 cm−3 range. These results demonstrate MOCVD growth of electronics grade record-high mobility, low carrier density, and thick β-Ga2O3 drift layers for next-generation vertical β-Ga2O3 power devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI