Conjugated Semantic Pool Improves OOD Detection with Pre-trained Vision-Language Models

计算机科学 共轭体系 自然语言处理 人工智能 化学 有机化学 聚合物
作者
Mengyuan Chen,Junyu Gao,Changsheng Xu
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.08611
摘要

A straightforward pipeline for zero-shot out-of-distribution (OOD) detection involves selecting potential OOD labels from an extensive semantic pool and then leveraging a pre-trained vision-language model to perform classification on both in-distribution (ID) and OOD labels. In this paper, we theorize that enhancing performance requires expanding the semantic pool, while increasing the expected probability of selected OOD labels being activated by OOD samples, and ensuring low mutual dependence among the activations of these OOD labels. A natural expansion manner is to adopt a larger lexicon; however, the inevitable introduction of numerous synonyms and uncommon words fails to meet the above requirements, indicating that viable expansion manners move beyond merely selecting words from a lexicon. Since OOD detection aims to correctly classify input images into ID/OOD class groups, we can "make up" OOD label candidates which are not standard class names but beneficial for the process. Observing that the original semantic pool is comprised of unmodified specific class names, we correspondingly construct a conjugated semantic pool (CSP) consisting of modified superclass names, each serving as a cluster center for samples sharing similar properties across different categories. Consistent with our established theory, expanding OOD label candidates with the CSP satisfies the requirements and outperforms existing works by 7.89% in FPR95. Codes are available in https://github.com/MengyuanChen21/NeurIPS2024-CSP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hll完成签到,获得积分20
1秒前
阳yang发布了新的文献求助10
1秒前
2秒前
wang1090发布了新的文献求助30
3秒前
呜呜呜呜完成签到,获得积分10
3秒前
3秒前
Riki发布了新的文献求助10
4秒前
88发布了新的文献求助10
4秒前
5秒前
充电宝应助zfy采纳,获得10
6秒前
sak完成签到,获得积分10
7秒前
Shuo Yang发布了新的文献求助20
7秒前
呜呜呜呜发布了新的文献求助10
7秒前
在水一方应助hhzz采纳,获得10
7秒前
旧是完成签到 ,获得积分10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
杨小胖完成签到 ,获得积分10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
mm发布了新的文献求助10
9秒前
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
shouyu29应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
RC_Wang应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得30
10秒前
sutharsons应助科研通管家采纳,获得30
10秒前
归海含烟完成签到,获得积分10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
shire应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得10
10秒前
RC_Wang应助科研通管家采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808