DGSIST: Clustering spatial transcriptome data based on deep graph structure Infomax

最大熵 聚类分析 转录组 计算机科学 人工智能 计算生物学 生物 遗传学 基因 计算机网络 盲信号分离 频道(广播) 基因表达
作者
Yu-Han Xiu,Si-Lin Sun,Bingwei Zhou,Ying Wan,Hua Tang,Haixia Long
出处
期刊:Methods [Elsevier BV]
标识
DOI:10.1016/j.ymeth.2024.10.002
摘要

Although spatial transcriptomics data provide valuable insights into gene expression profiles and the spatial structure of tissues, most studies rely solely on gene expression information, underutilizing the spatial data. To fully leverage the potential of spatial transcriptomics and graph neural networks, the DGSI (Deep Graph Structure Infomax) model is proposed. This innovative graph data processing model uses graph convolutional neural networks and employs an unsupervised learning approach. It maximizes the mutual information between graph-level and node-level representations, emphasizing flexible sampling and aggregation of nodes and their neighbors. This effectively captures and incorporates local information from nodes into the overall graph structure. Additionally, this paper developed the DGSIST framework, an unsupervised cell clustering method that integrates the DGSI model, SVD dimensionality reduction algorithm, and k-means++ clustering algorithm. This aims to identify cell types accurately. DGSIST fully uses spatial transcriptomics data and outperforms existing methods in accuracy. Demonstrations of DGSIST's capability across various tissue types and technological platforms have shown its effectiveness in accurately identifying spatial domains in multiple tissue sections. Compared to other spatial clustering methods, DGSIST excels in cell clustering and effectively eliminates batch effects without needing batch correction. DGSIST excels in spatial clustering analysis, spatial variation identification, and differential gene expression detection and directly applies to graph analysis tasks, such as node classification, link prediction, or graph clustering. Anticipation lies in the contribution of the DGSIST framework to a deeper understanding of the spatial organizational structures of diseases such as cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
期刊应助科研通管家采纳,获得20
刚刚
齐半青完成签到,获得积分10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
刚刚
Orange应助科研通管家采纳,获得10
刚刚
SYLH应助科研通管家采纳,获得40
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得20
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
快乐大炮完成签到 ,获得积分10
2秒前
晴烟ZYM发布了新的文献求助30
2秒前
3秒前
3秒前
3秒前
5秒前
Orange应助小文cremen采纳,获得10
6秒前
丘比特应助小文cremen采纳,获得10
6秒前
7秒前
7秒前
小袁发布了新的文献求助10
7秒前
7秒前
123666发布了新的文献求助30
8秒前
JamesPei应助忆枫采纳,获得10
8秒前
安详凡发布了新的文献求助10
8秒前
杜兰特发布了新的文献求助10
8秒前
wanwan应助无奈的幻雪采纳,获得10
8秒前
马关维发布了新的文献求助10
10秒前
10秒前
zhhua完成签到,获得积分10
11秒前
11秒前
zzz完成签到 ,获得积分10
12秒前
GT发布了新的文献求助10
13秒前
13秒前
桐桐应助社牛小柯采纳,获得10
14秒前
14秒前
谢建平发布了新的文献求助10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992117
求助须知:如何正确求助?哪些是违规求助? 3533123
关于积分的说明 11261129
捐赠科研通 3272496
什么是DOI,文献DOI怎么找? 1805837
邀请新用户注册赠送积分活动 882717
科研通“疑难数据库(出版商)”最低求助积分说明 809425