DGSIST: Clustering spatial transcriptome data based on deep graph structure Infomax

最大熵 聚类分析 转录组 计算机科学 人工智能 计算生物学 生物 遗传学 基因 盲信号分离 基因表达 频道(广播) 计算机网络
作者
Yu-Han Xiu,Si-Lin Sun,Bingwei Zhou,Ying Wan,Hua Tang,Haixia Long
出处
期刊:Methods [Elsevier]
标识
DOI:10.1016/j.ymeth.2024.10.002
摘要

Although spatial transcriptomics data provide valuable insights into gene expression profiles and the spatial structure of tissues, most studies rely solely on gene expression information, underutilizing the spatial data. To fully leverage the potential of spatial transcriptomics and graph neural networks, the DGSI (Deep Graph Structure Infomax) model is proposed. This innovative graph data processing model uses graph convolutional neural networks and employs an unsupervised learning approach. It maximizes the mutual information between graph-level and node-level representations, emphasizing flexible sampling and aggregation of nodes and their neighbors. This effectively captures and incorporates local information from nodes into the overall graph structure. Additionally, this paper developed the DGSIST framework, an unsupervised cell clustering method that integrates the DGSI model, SVD dimensionality reduction algorithm, and k-means++ clustering algorithm. This aims to identify cell types accurately. DGSIST fully uses spatial transcriptomics data and outperforms existing methods in accuracy. Demonstrations of DGSIST's capability across various tissue types and technological platforms have shown its effectiveness in accurately identifying spatial domains in multiple tissue sections. Compared to other spatial clustering methods, DGSIST excels in cell clustering and effectively eliminates batch effects without needing batch correction. DGSIST excels in spatial clustering analysis, spatial variation identification, and differential gene expression detection and directly applies to graph analysis tasks, such as node classification, link prediction, or graph clustering. Anticipation lies in the contribution of the DGSIST framework to a deeper understanding of the spatial organizational structures of diseases such as cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liolsy完成签到,获得积分10
1秒前
库凯伊完成签到,获得积分10
1秒前
端庄不愁发布了新的文献求助10
1秒前
fang完成签到,获得积分20
1秒前
1秒前
爆米花应助刘洋采纳,获得30
2秒前
胖胖猪完成签到,获得积分10
2秒前
毛豆应助sqrt138采纳,获得30
3秒前
英姑应助liuhui采纳,获得10
4秒前
眯眯眼的青文完成签到,获得积分10
4秒前
ljscjth完成签到 ,获得积分10
5秒前
Jeffery426发布了新的文献求助10
6秒前
CodeCraft应助沐曦采纳,获得10
7秒前
害羞外套完成签到,获得积分20
8秒前
科研通AI2S应助周周采纳,获得10
9秒前
Su完成签到,获得积分10
9秒前
YU DIAN完成签到,获得积分10
10秒前
11秒前
景景好完成签到,获得积分10
11秒前
no1isme完成签到 ,获得积分10
11秒前
roclie完成签到,获得积分10
11秒前
12秒前
12秒前
15秒前
15秒前
大师应助jayskang采纳,获得10
15秒前
善学以致用应助liuhui采纳,获得10
15秒前
桐桐应助皮卡丘的夏天采纳,获得10
15秒前
16秒前
韩soso发布了新的文献求助10
16秒前
16秒前
17秒前
zzh发布了新的文献求助30
18秒前
19秒前
19秒前
毛豆应助sqrt138采纳,获得30
19秒前
小青柠发布了新的文献求助10
20秒前
大模型应助xiaomijiaAK采纳,获得10
21秒前
21秒前
文献缺缺发布了新的文献求助10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312100
求助须知:如何正确求助?哪些是违规求助? 2944743
关于积分的说明 8521216
捐赠科研通 2620426
什么是DOI,文献DOI怎么找? 1432831
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650106