Generative Artificial Intelligence in Education: Advancing Adaptive and Personalized Learning

生成语法 人工智能 计算机科学 适应性学习 生成模型 个性化学习 机器学习 心理学 数学教育 教学方法 开放式学习 合作学习
作者
Manel Guettala,Samir Bourekkache,Okba Kazar,Saad Harous
出处
期刊:Acta Informatica Pragensia [Prague University of Economics and Business]
卷期号:13 (3): 460-489 被引量:4
标识
DOI:10.18267/j.aip.235
摘要

The integration of generative artificial intelligence (AI) into adaptive and personalized learning represents a transformative shift in the educational landscape.This research paper investigates the impact of incorporating generative AI into adaptive and personalized learning environments, with a focus on tracing the evolution from conventional artificial intelligence methods to generative AI and identifying its diverse applications in education.The study begins with a comprehensive review of the evolution of generative AI models and frameworks.A framework of selection criteria is established to curate case studies showcasing the applications of generative AI in education.These case studies are analysed to elucidate the benefits and challenges associated with integrating generative AI into adaptive learning frameworks.Through an in-depth analysis of selected case studies, the study reveals tangible benefits derived from generative AI integration, including increased student engagement, improved test scores and accelerated skill development.Ethical, technical and pedagogical challenges related to generative AI integration are identified, emphasizing the need for careful consideration and collaborative efforts between educators and technologists.The findings underscore the transformative potential of generative AI in revolutionizing education.By addressing ethical concerns, navigating technical challenges and embracing human-centric approaches, educators and technologists can collaboratively harness the power of generative AI to create innovative and inclusive learning environments.Additionally, the study highlights the transition from Education 4.0 to Education 5.0, emphasizing the importance of social-emotional learning and human connection alongside personalization in shaping the future of education.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小马甲应助肖雪依采纳,获得10
刚刚
彭于晏应助梁硕采纳,获得10
刚刚
jjjwln发布了新的文献求助10
2秒前
Owen应助ee采纳,获得10
2秒前
3秒前
大鱼完成签到,获得积分10
3秒前
3秒前
脆脆鲨发布了新的文献求助10
3秒前
情怀应助流川枫采纳,获得10
4秒前
天天快乐应助谦让谷菱采纳,获得10
4秒前
electronic完成签到,获得积分10
5秒前
田様应助hhan采纳,获得10
5秒前
kmoyy完成签到,获得积分10
7秒前
昏睡的半鬼完成签到 ,获得积分10
7秒前
7秒前
8秒前
Owen应助王晓风采纳,获得10
8秒前
8秒前
NexusExplorer应助陈陈采纳,获得10
8秒前
9秒前
左囧发布了新的文献求助10
9秒前
10秒前
11秒前
隐形曼青应助深情白风采纳,获得10
11秒前
浮云发布了新的文献求助10
12秒前
shanshan发布了新的文献求助50
12秒前
12秒前
jintian完成签到 ,获得积分10
12秒前
12秒前
13秒前
wmmm完成签到,获得积分10
13秒前
热心天佑完成签到,获得积分10
13秒前
默认用户名完成签到,获得积分10
15秒前
16秒前
研友_ZlPBDZ完成签到,获得积分10
16秒前
16秒前
不配.应助少少少采纳,获得10
16秒前
不可思宇完成签到,获得积分10
17秒前
wanci应助滚去学习采纳,获得10
17秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3411041
求助须知:如何正确求助?哪些是违规求助? 3014509
关于积分的说明 8864142
捐赠科研通 2701959
什么是DOI,文献DOI怎么找? 1481413
科研通“疑难数据库(出版商)”最低求助积分说明 684839
邀请新用户注册赠送积分活动 679333