Open-world electrocardiogram classification via domain knowledge-driven contrastive learning

人工智能 计算机科学 领域(数学分析) 模式识别(心理学) 机器学习 自然语言处理 数学 数学分析
作者
Shuang Zhou,Xiao Huang,Ninghao Liu,Qian Zhang,Yuan‐Ting Zhang,Fu-Lai Chung
出处
期刊:Neural Networks [Elsevier]
卷期号:179: 106551-106551
标识
DOI:10.1016/j.neunet.2024.106551
摘要

Automatic electrocardiogram (ECG) classification provides valuable auxiliary information for assisting disease diagnosis and has received much attention in research. The success of existing classification models relies on fitting the labeled samples for every ECG type. However, in practice, well-annotated ECG datasets usually cover only limited ECG types. It thus raises an issue: conventional classification models trained with limited ECG types can only identify those ECG types that have already been observed in the training set, but fail to recognize unseen (or unknown) ECG types that exist in the wild and are not included in training data. In this work, we investigate an important problem called open-world ECG classification that can predict fine-grained observed ECG classes and identify unseen classes. Accordingly, we propose a customized method that first incorporates clinical knowledge into contrastive learning by generating "hard negative" samples to guide learning diagnostic ECG features (i.e., distinguishable representations), and then performs multi-hypersphere learning to learn compact ECG representations for classification. The experiment results on 12-lead ECG datasets (CPSC2018, PTB-XL, and Georgia) demonstrate that the proposed method outperforms the state-of-the-art methods. Specifically, our method achieves superior accuracy than the comparative methods on the unseen ECG class and certain seen classes. Overall, the investigated problem (i.e., open-world ECG classification) helps to draw attention to the reliability of automatic ECG diagnosis, and the proposed method is proven effective in tackling the challenges. The code and datasets are released at https://github.com/betterzhou/Open_World_ECG_Classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Solomon完成签到 ,获得积分0
刚刚
kunkun发布了新的文献求助10
刚刚
机灵一兰完成签到 ,获得积分10
1秒前
大个应助111采纳,获得10
1秒前
英俊的铭应助猪猪hero采纳,获得30
1秒前
ldn关注了科研通微信公众号
1秒前
汉堡包应助xiaoma采纳,获得10
1秒前
fifteen发布了新的文献求助10
3秒前
奕初阳发布了新的文献求助10
3秒前
4秒前
eureka发布了新的文献求助10
4秒前
hsli发布了新的文献求助10
4秒前
锦李完成签到,获得积分10
5秒前
6秒前
kunkun完成签到,获得积分10
7秒前
白小黑发布了新的文献求助30
8秒前
田様应助zyf采纳,获得10
9秒前
10秒前
10秒前
11秒前
11秒前
12秒前
12秒前
程贝贝完成签到,获得积分20
13秒前
ldn发布了新的文献求助10
14秒前
田様应助ray采纳,获得10
14秒前
丘比特应助yanhuazi采纳,获得10
15秒前
初雪未曾消亡完成签到,获得积分10
15秒前
16秒前
独孤刘发布了新的文献求助10
16秒前
17秒前
18秒前
甜甜玫瑰应助syy采纳,获得10
20秒前
abcd发布了新的文献求助10
20秒前
21秒前
23秒前
23秒前
111发布了新的文献求助10
24秒前
147关闭了147文献求助
24秒前
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150244
求助须知:如何正确求助?哪些是违规求助? 2801374
关于积分的说明 7844178
捐赠科研通 2458888
什么是DOI,文献DOI怎么找? 1308710
科研通“疑难数据库(出版商)”最低求助积分说明 628562
版权声明 601721