Open-world electrocardiogram classification via domain knowledge-driven contrastive learning

人工智能 计算机科学 领域(数学分析) 模式识别(心理学) 机器学习 自然语言处理 数学 数学分析
作者
Shuang Zhou,Xiao Huang,Ninghao Liu,Wen Zhang,Yuan‐Ting Zhang,Fu-Lai Chung
出处
期刊:Neural Networks [Elsevier BV]
卷期号:179: 106551-106551 被引量:3
标识
DOI:10.1016/j.neunet.2024.106551
摘要

Automatic electrocardiogram (ECG) classification provides valuable auxiliary information for assisting disease diagnosis and has received much attention in research. The success of existing classification models relies on fitting the labeled samples for every ECG type. However, in practice, well-annotated ECG datasets usually cover only limited ECG types. It thus raises an issue: conventional classification models trained with limited ECG types can only identify those ECG types that have already been observed in the training set, but fail to recognize unseen (or unknown) ECG types that exist in the wild and are not included in training data. In this work, we investigate an important problem called open-world ECG classification that can predict fine-grained observed ECG classes and identify unseen classes. Accordingly, we propose a customized method that first incorporates clinical knowledge into contrastive learning by generating "hard negative" samples to guide learning diagnostic ECG features (i.e., distinguishable representations), and then performs multi-hypersphere learning to learn compact ECG representations for classification. The experiment results on 12-lead ECG datasets (CPSC2018, PTB-XL, and Georgia) demonstrate that the proposed method outperforms the state-of-the-art methods. Specifically, our method achieves superior accuracy than the comparative methods on the unseen ECG class and certain seen classes. Overall, the investigated problem (i.e., open-world ECG classification) helps to draw attention to the reliability of automatic ECG diagnosis, and the proposed method is proven effective in tackling the challenges. The code and datasets are released at https://github.com/betterzhou/Open_World_ECG_Classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JOJO发布了新的文献求助10
刚刚
浮游应助香菜采纳,获得10
1秒前
传奇3应助hhhh采纳,获得10
1秒前
1秒前
1秒前
淡淡冷荷发布了新的文献求助10
3秒前
orixero应助吴学成采纳,获得10
3秒前
文文完成签到,获得积分10
4秒前
希望天下0贩的0应助山茶采纳,获得10
4秒前
华仔应助齐天大圣采纳,获得10
5秒前
liao宝宝发布了新的文献求助10
5秒前
6秒前
完美世界应助要开心吖采纳,获得10
7秒前
科研通AI5应助LOYAL采纳,获得10
7秒前
7秒前
无花果应助飞阳采纳,获得10
8秒前
阳光应助Hmzek采纳,获得30
8秒前
rrrrrrry发布了新的文献求助10
9秒前
yuzhu完成签到,获得积分10
9秒前
无极微光应助小橘子2022采纳,获得20
10秒前
en完成签到,获得积分10
11秒前
浮游应助张宁宁采纳,获得10
11秒前
12秒前
一二发布了新的文献求助10
13秒前
13秒前
汤泽琪发布了新的文献求助10
13秒前
严珍珍完成签到 ,获得积分10
14秒前
baling发布了新的文献求助10
14秒前
彭于晏应助诚先生采纳,获得10
14秒前
七少爷完成签到 ,获得积分10
14秒前
14秒前
moyu123发布了新的文献求助10
15秒前
雯雯完成签到 ,获得积分10
16秒前
17秒前
18秒前
18秒前
灰灰完成签到,获得积分10
18秒前
QIAOMENG发布了新的文献求助30
20秒前
小马甲应助自觉的薯片采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5181532
求助须知:如何正确求助?哪些是违规求助? 4368481
关于积分的说明 13603244
捐赠科研通 4219672
什么是DOI,文献DOI怎么找? 2314180
邀请新用户注册赠送积分活动 1312904
关于科研通互助平台的介绍 1261591