已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Open-world electrocardiogram classification via domain knowledge-driven contrastive learning

人工智能 计算机科学 领域(数学分析) 模式识别(心理学) 机器学习 自然语言处理 数学 数学分析
作者
Shuang Zhou,Xiao Huang,Ninghao Liu,Wen Zhang,Yuan‐Ting Zhang,Fu-Lai Chung
出处
期刊:Neural Networks [Elsevier]
卷期号:179: 106551-106551 被引量:3
标识
DOI:10.1016/j.neunet.2024.106551
摘要

Automatic electrocardiogram (ECG) classification provides valuable auxiliary information for assisting disease diagnosis and has received much attention in research. The success of existing classification models relies on fitting the labeled samples for every ECG type. However, in practice, well-annotated ECG datasets usually cover only limited ECG types. It thus raises an issue: conventional classification models trained with limited ECG types can only identify those ECG types that have already been observed in the training set, but fail to recognize unseen (or unknown) ECG types that exist in the wild and are not included in training data. In this work, we investigate an important problem called open-world ECG classification that can predict fine-grained observed ECG classes and identify unseen classes. Accordingly, we propose a customized method that first incorporates clinical knowledge into contrastive learning by generating "hard negative" samples to guide learning diagnostic ECG features (i.e., distinguishable representations), and then performs multi-hypersphere learning to learn compact ECG representations for classification. The experiment results on 12-lead ECG datasets (CPSC2018, PTB-XL, and Georgia) demonstrate that the proposed method outperforms the state-of-the-art methods. Specifically, our method achieves superior accuracy than the comparative methods on the unseen ECG class and certain seen classes. Overall, the investigated problem (i.e., open-world ECG classification) helps to draw attention to the reliability of automatic ECG diagnosis, and the proposed method is proven effective in tackling the challenges. The code and datasets are released at https://github.com/betterzhou/Open_World_ECG_Classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小亿发布了新的文献求助10
1秒前
3秒前
5秒前
6秒前
7秒前
儒雅龙完成签到 ,获得积分10
7秒前
浮游应助明理的蜗牛采纳,获得10
9秒前
wonder123发布了新的文献求助10
9秒前
9秒前
辛勤远望完成签到,获得积分10
10秒前
11秒前
攀攀完成签到,获得积分10
12秒前
yu完成签到,获得积分20
13秒前
14秒前
14秒前
15秒前
W~舞发布了新的文献求助10
15秒前
周钰波完成签到,获得积分10
15秒前
深情安青应助ccj采纳,获得10
16秒前
wonder123完成签到,获得积分10
18秒前
W~舞完成签到,获得积分10
20秒前
优美的小笨蛋应助ccll采纳,获得20
20秒前
22秒前
二三语逢山外山2完成签到 ,获得积分10
22秒前
小二郎应助怕黑如风采纳,获得10
24秒前
24秒前
长生完成签到 ,获得积分10
24秒前
27秒前
27秒前
明理的蜗牛完成签到,获得积分10
27秒前
淡淡的无敌完成签到 ,获得积分10
28秒前
XingZiBa应助shinn采纳,获得10
29秒前
LL完成签到,获得积分10
30秒前
qq158014169发布了新的文献求助10
31秒前
丨丨丨完成签到,获得积分10
31秒前
蓝胖子完成签到 ,获得积分10
32秒前
健壮的花瓣完成签到 ,获得积分10
32秒前
Ruiqing发布了新的文献求助30
33秒前
ccj发布了新的文献求助10
34秒前
wanci应助传统的戎采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426218
求助须知:如何正确求助?哪些是违规求助? 4539957
关于积分的说明 14171259
捐赠科研通 4457794
什么是DOI,文献DOI怎么找? 2444671
邀请新用户注册赠送积分活动 1435605
关于科研通互助平台的介绍 1413123