Open-world electrocardiogram classification via domain knowledge-driven contrastive learning

人工智能 计算机科学 领域(数学分析) 模式识别(心理学) 机器学习 自然语言处理 数学 数学分析
作者
Shuang Zhou,Xiao Huang,Ninghao Liu,Wen Zhang,Yuan‐Ting Zhang,Fu-Lai Chung
出处
期刊:Neural Networks [Elsevier BV]
卷期号:179: 106551-106551 被引量:3
标识
DOI:10.1016/j.neunet.2024.106551
摘要

Automatic electrocardiogram (ECG) classification provides valuable auxiliary information for assisting disease diagnosis and has received much attention in research. The success of existing classification models relies on fitting the labeled samples for every ECG type. However, in practice, well-annotated ECG datasets usually cover only limited ECG types. It thus raises an issue: conventional classification models trained with limited ECG types can only identify those ECG types that have already been observed in the training set, but fail to recognize unseen (or unknown) ECG types that exist in the wild and are not included in training data. In this work, we investigate an important problem called open-world ECG classification that can predict fine-grained observed ECG classes and identify unseen classes. Accordingly, we propose a customized method that first incorporates clinical knowledge into contrastive learning by generating "hard negative" samples to guide learning diagnostic ECG features (i.e., distinguishable representations), and then performs multi-hypersphere learning to learn compact ECG representations for classification. The experiment results on 12-lead ECG datasets (CPSC2018, PTB-XL, and Georgia) demonstrate that the proposed method outperforms the state-of-the-art methods. Specifically, our method achieves superior accuracy than the comparative methods on the unseen ECG class and certain seen classes. Overall, the investigated problem (i.e., open-world ECG classification) helps to draw attention to the reliability of automatic ECG diagnosis, and the proposed method is proven effective in tackling the challenges. The code and datasets are released at https://github.com/betterzhou/Open_World_ECG_Classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kiuikiu完成签到,获得积分10
刚刚
哈哈完成签到,获得积分10
1秒前
MiManchi完成签到,获得积分10
1秒前
小小邹完成签到,获得积分10
1秒前
正直听白发布了新的文献求助10
1秒前
大方雪卉完成签到,获得积分10
3秒前
paleo-地质完成签到,获得积分10
3秒前
碳土不凡完成签到 ,获得积分10
3秒前
3秒前
zdxs完成签到,获得积分10
3秒前
ming完成签到 ,获得积分10
3秒前
沙克几十块完成签到,获得积分0
4秒前
气球样变综合征完成签到 ,获得积分10
5秒前
斯文败类应助超大只怪兽采纳,获得10
5秒前
咖喱发布了新的文献求助10
5秒前
6秒前
6秒前
林安笙完成签到,获得积分10
6秒前
6秒前
7秒前
NexusExplorer应助qu采纳,获得10
8秒前
研友_8KX15L完成签到,获得积分10
8秒前
kytlzq完成签到,获得积分10
8秒前
9秒前
在水一方应助IVY1300采纳,获得10
9秒前
9秒前
Yvonne完成签到,获得积分10
9秒前
黄则已发布了新的文献求助10
10秒前
corner发布了新的文献求助10
11秒前
浅陌初心完成签到 ,获得积分10
11秒前
11秒前
Joshua完成签到,获得积分10
11秒前
三三磊完成签到,获得积分10
11秒前
ddd完成签到,获得积分10
12秒前
Lucas应助无私诗云采纳,获得10
12秒前
小情绪完成签到,获得积分10
12秒前
超大只怪兽完成签到,获得积分20
12秒前
syou_tiger完成签到,获得积分10
14秒前
余白薇发布了新的文献求助10
14秒前
过时的广山完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4598108
求助须知:如何正确求助?哪些是违规求助? 4009392
关于积分的说明 12410910
捐赠科研通 3688745
什么是DOI,文献DOI怎么找? 2033396
邀请新用户注册赠送积分活动 1066690
科研通“疑难数据库(出版商)”最低求助积分说明 951763