亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Open-world electrocardiogram classification via domain knowledge-driven contrastive learning

人工智能 计算机科学 领域(数学分析) 模式识别(心理学) 机器学习 自然语言处理 数学 数学分析
作者
Shuang Zhou,Xiao Huang,Ninghao Liu,Wen Zhang,Yuan‐Ting Zhang,Fu-Lai Chung
出处
期刊:Neural Networks [Elsevier]
卷期号:179: 106551-106551 被引量:5
标识
DOI:10.1016/j.neunet.2024.106551
摘要

Automatic electrocardiogram (ECG) classification provides valuable auxiliary information for assisting disease diagnosis and has received much attention in research. The success of existing classification models relies on fitting the labeled samples for every ECG type. However, in practice, well-annotated ECG datasets usually cover only limited ECG types. It thus raises an issue: conventional classification models trained with limited ECG types can only identify those ECG types that have already been observed in the training set, but fail to recognize unseen (or unknown) ECG types that exist in the wild and are not included in training data. In this work, we investigate an important problem called open-world ECG classification that can predict fine-grained observed ECG classes and identify unseen classes. Accordingly, we propose a customized method that first incorporates clinical knowledge into contrastive learning by generating "hard negative" samples to guide learning diagnostic ECG features (i.e., distinguishable representations), and then performs multi-hypersphere learning to learn compact ECG representations for classification. The experiment results on 12-lead ECG datasets (CPSC2018, PTB-XL, and Georgia) demonstrate that the proposed method outperforms the state-of-the-art methods. Specifically, our method achieves superior accuracy than the comparative methods on the unseen ECG class and certain seen classes. Overall, the investigated problem (i.e., open-world ECG classification) helps to draw attention to the reliability of automatic ECG diagnosis, and the proposed method is proven effective in tackling the challenges. The code and datasets are released at https://github.com/betterzhou/Open_World_ECG_Classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2021完成签到 ,获得积分10
1秒前
4秒前
赵彧发布了新的文献求助10
4秒前
Fan完成签到 ,获得积分10
5秒前
evz应助小y要读书采纳,获得10
6秒前
只只完成签到,获得积分20
9秒前
9秒前
12秒前
王君青见完成签到,获得积分10
12秒前
14秒前
14秒前
华仔应助陈文娜采纳,获得10
16秒前
潇洒的诗桃应助王君青见采纳,获得10
17秒前
17秒前
苏久发布了新的文献求助10
20秒前
26秒前
lijiayi完成签到,获得积分20
28秒前
lijiayi发布了新的文献求助10
31秒前
34秒前
浮游应助科研通管家采纳,获得10
37秒前
香蕉觅云应助科研通管家采纳,获得30
37秒前
星辰大海应助科研通管家采纳,获得10
37秒前
王炸发布了新的文献求助10
37秒前
上官若男应助科研通管家采纳,获得10
37秒前
打打应助科研通管家采纳,获得10
37秒前
大个应助科研通管家采纳,获得10
37秒前
37秒前
科目三应助科研通管家采纳,获得10
37秒前
大模型应助科研通管家采纳,获得10
37秒前
整齐半青完成签到 ,获得积分10
41秒前
41秒前
lulumomoxixi完成签到 ,获得积分10
46秒前
47秒前
ccc完成签到 ,获得积分10
48秒前
孟浩然完成签到 ,获得积分10
48秒前
任仕春发布了新的文献求助10
52秒前
53秒前
科研王完成签到 ,获得积分10
58秒前
开拖拉机的芍药完成签到 ,获得积分10
58秒前
陈文娜发布了新的文献求助10
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509205
求助须知:如何正确求助?哪些是违规求助? 4604206
关于积分的说明 14489373
捐赠科研通 4538907
什么是DOI,文献DOI怎么找? 2487224
邀请新用户注册赠送积分活动 1469636
关于科研通互助平台的介绍 1441867