亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Open-world electrocardiogram classification via domain knowledge-driven contrastive learning

人工智能 计算机科学 领域(数学分析) 模式识别(心理学) 机器学习 自然语言处理 数学 数学分析
作者
Shuang Zhou,Xiao Huang,Ninghao Liu,Wen Zhang,Yuan‐Ting Zhang,Fu-Lai Chung
出处
期刊:Neural Networks [Elsevier]
卷期号:179: 106551-106551 被引量:5
标识
DOI:10.1016/j.neunet.2024.106551
摘要

Automatic electrocardiogram (ECG) classification provides valuable auxiliary information for assisting disease diagnosis and has received much attention in research. The success of existing classification models relies on fitting the labeled samples for every ECG type. However, in practice, well-annotated ECG datasets usually cover only limited ECG types. It thus raises an issue: conventional classification models trained with limited ECG types can only identify those ECG types that have already been observed in the training set, but fail to recognize unseen (or unknown) ECG types that exist in the wild and are not included in training data. In this work, we investigate an important problem called open-world ECG classification that can predict fine-grained observed ECG classes and identify unseen classes. Accordingly, we propose a customized method that first incorporates clinical knowledge into contrastive learning by generating "hard negative" samples to guide learning diagnostic ECG features (i.e., distinguishable representations), and then performs multi-hypersphere learning to learn compact ECG representations for classification. The experiment results on 12-lead ECG datasets (CPSC2018, PTB-XL, and Georgia) demonstrate that the proposed method outperforms the state-of-the-art methods. Specifically, our method achieves superior accuracy than the comparative methods on the unseen ECG class and certain seen classes. Overall, the investigated problem (i.e., open-world ECG classification) helps to draw attention to the reliability of automatic ECG diagnosis, and the proposed method is proven effective in tackling the challenges. The code and datasets are released at https://github.com/betterzhou/Open_World_ECG_Classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
杨怀托发布了新的文献求助10
3秒前
alence完成签到 ,获得积分10
4秒前
文欣完成签到 ,获得积分0
8秒前
简柠完成签到,获得积分10
8秒前
9秒前
zkkz完成签到,获得积分10
10秒前
石二三完成签到,获得积分10
10秒前
13秒前
18秒前
soler应助科研通管家采纳,获得10
28秒前
完美世界应助科研通管家采纳,获得10
28秒前
29秒前
李爱国应助科研通管家采纳,获得10
29秒前
星辰大海应助科研通管家采纳,获得10
29秒前
soler应助科研通管家采纳,获得10
29秒前
56秒前
Nick_YFWS完成签到,获得积分10
59秒前
fge完成签到,获得积分10
1分钟前
布同完成签到,获得积分10
1分钟前
serenity711完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
棠棠完成签到 ,获得积分10
1分钟前
可乐发布了新的文献求助10
1分钟前
1分钟前
Ye完成签到,获得积分10
1分钟前
眼睛大吐司完成签到,获得积分20
1分钟前
归尘应助MikuMiya采纳,获得10
1分钟前
1分钟前
1分钟前
学者风范完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
粒粒发布了新的文献求助10
2分钟前
机灵采萱完成签到 ,获得积分10
2分钟前
2分钟前
Jane完成签到,获得积分10
2分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449673
求助须知:如何正确求助?哪些是违规求助? 4557748
关于积分的说明 14264893
捐赠科研通 4480932
什么是DOI,文献DOI怎么找? 2454595
邀请新用户注册赠送积分活动 1445397
关于科研通互助平台的介绍 1421136