Open-world electrocardiogram classification via domain knowledge-driven contrastive learning

人工智能 计算机科学 领域(数学分析) 模式识别(心理学) 机器学习 自然语言处理 数学 数学分析
作者
Shuang Zhou,Xiao Huang,Ninghao Liu,Wen Zhang,Yuan‐Ting Zhang,Fu-Lai Chung
出处
期刊:Neural Networks [Elsevier]
卷期号:179: 106551-106551 被引量:3
标识
DOI:10.1016/j.neunet.2024.106551
摘要

Automatic electrocardiogram (ECG) classification provides valuable auxiliary information for assisting disease diagnosis and has received much attention in research. The success of existing classification models relies on fitting the labeled samples for every ECG type. However, in practice, well-annotated ECG datasets usually cover only limited ECG types. It thus raises an issue: conventional classification models trained with limited ECG types can only identify those ECG types that have already been observed in the training set, but fail to recognize unseen (or unknown) ECG types that exist in the wild and are not included in training data. In this work, we investigate an important problem called open-world ECG classification that can predict fine-grained observed ECG classes and identify unseen classes. Accordingly, we propose a customized method that first incorporates clinical knowledge into contrastive learning by generating "hard negative" samples to guide learning diagnostic ECG features (i.e., distinguishable representations), and then performs multi-hypersphere learning to learn compact ECG representations for classification. The experiment results on 12-lead ECG datasets (CPSC2018, PTB-XL, and Georgia) demonstrate that the proposed method outperforms the state-of-the-art methods. Specifically, our method achieves superior accuracy than the comparative methods on the unseen ECG class and certain seen classes. Overall, the investigated problem (i.e., open-world ECG classification) helps to draw attention to the reliability of automatic ECG diagnosis, and the proposed method is proven effective in tackling the challenges. The code and datasets are released at https://github.com/betterzhou/Open_World_ECG_Classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
搞怪以蕊发布了新的文献求助10
1秒前
烟花应助贪玩半仙采纳,获得10
2秒前
李霞客发布了新的文献求助10
2秒前
拓展完成签到 ,获得积分10
2秒前
爆米花应助怡然白桃采纳,获得40
3秒前
3秒前
4秒前
清风完成签到,获得积分10
4秒前
陈嘉良发布了新的文献求助10
5秒前
ralpher发布了新的文献求助10
6秒前
7秒前
7秒前
迅速的丑发布了新的文献求助10
8秒前
安详向日葵完成签到 ,获得积分10
9秒前
kaiyuannnnnn完成签到,获得积分10
9秒前
SciGPT应助zyc采纳,获得10
11秒前
Jue发布了新的文献求助10
12秒前
doudou发布了新的文献求助10
12秒前
寒冷谷雪发布了新的文献求助10
13秒前
菲菲完成签到 ,获得积分10
14秒前
15秒前
Owen应助陈嘉良采纳,获得10
15秒前
pyt完成签到 ,获得积分10
16秒前
17秒前
17秒前
怡然的怜烟应助刘大白采纳,获得30
19秒前
脑洞疼应助欣喜成仁采纳,获得10
20秒前
童年的秋千完成签到,获得积分10
20秒前
执着的鹏煊完成签到,获得积分10
20秒前
科研通AI6应助聂难敌采纳,获得10
21秒前
21秒前
22秒前
关耳完成签到,获得积分10
22秒前
Zx_1993应助小狗不是抠脚兵采纳,获得20
22秒前
青4096发布了新的文献求助10
23秒前
24秒前
doudou完成签到 ,获得积分10
25秒前
nenoaowu发布了新的文献求助10
26秒前
26秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342879
求助须知:如何正确求助?哪些是违规求助? 4478579
关于积分的说明 13940083
捐赠科研通 4375429
什么是DOI,文献DOI怎么找? 2404055
邀请新用户注册赠送积分活动 1396617
关于科研通互助平台的介绍 1368930