Open-world electrocardiogram classification via domain knowledge-driven contrastive learning

人工智能 计算机科学 领域(数学分析) 模式识别(心理学) 机器学习 自然语言处理 数学 数学分析
作者
Shuang Zhou,Xiao Huang,Ninghao Liu,Wen Zhang,Yuan‐Ting Zhang,Fu-Lai Chung
出处
期刊:Neural Networks [Elsevier BV]
卷期号:179: 106551-106551 被引量:2
标识
DOI:10.1016/j.neunet.2024.106551
摘要

Automatic electrocardiogram (ECG) classification provides valuable auxiliary information for assisting disease diagnosis and has received much attention in research. The success of existing classification models relies on fitting the labeled samples for every ECG type. However, in practice, well-annotated ECG datasets usually cover only limited ECG types. It thus raises an issue: conventional classification models trained with limited ECG types can only identify those ECG types that have already been observed in the training set, but fail to recognize unseen (or unknown) ECG types that exist in the wild and are not included in training data. In this work, we investigate an important problem called open-world ECG classification that can predict fine-grained observed ECG classes and identify unseen classes. Accordingly, we propose a customized method that first incorporates clinical knowledge into contrastive learning by generating "hard negative" samples to guide learning diagnostic ECG features (i.e., distinguishable representations), and then performs multi-hypersphere learning to learn compact ECG representations for classification. The experiment results on 12-lead ECG datasets (CPSC2018, PTB-XL, and Georgia) demonstrate that the proposed method outperforms the state-of-the-art methods. Specifically, our method achieves superior accuracy than the comparative methods on the unseen ECG class and certain seen classes. Overall, the investigated problem (i.e., open-world ECG classification) helps to draw attention to the reliability of automatic ECG diagnosis, and the proposed method is proven effective in tackling the challenges. The code and datasets are released at https://github.com/betterzhou/Open_World_ECG_Classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wei完成签到,获得积分0
2秒前
shinhee完成签到,获得积分10
2秒前
orixero应助tangzanwayne采纳,获得10
3秒前
阡陌完成签到,获得积分10
3秒前
大橙子完成签到,获得积分10
3秒前
的的的墨完成签到,获得积分10
3秒前
4秒前
芬芬完成签到,获得积分10
4秒前
雨霧雲完成签到,获得积分10
4秒前
zaphkiel完成签到,获得积分10
5秒前
5秒前
5秒前
326503177完成签到,获得积分10
6秒前
liuchao完成签到,获得积分10
6秒前
6秒前
123456发布了新的文献求助10
7秒前
筱筱完成签到,获得积分10
7秒前
腾腾发布了新的文献求助10
7秒前
7秒前
路人完成签到,获得积分0
8秒前
爆米花应助晚晚采纳,获得10
9秒前
sss发布了新的文献求助10
9秒前
有魅力强炫完成签到,获得积分10
9秒前
靓丽行天完成签到,获得积分10
10秒前
图图小可爱完成签到 ,获得积分10
10秒前
10秒前
SY完成签到,获得积分10
11秒前
余额发布了新的文献求助10
11秒前
T拐拐发布了新的文献求助10
12秒前
13秒前
瘦瘦的迎南完成签到 ,获得积分10
13秒前
三三完成签到,获得积分10
13秒前
怡然云朵完成签到,获得积分10
13秒前
1122完成签到 ,获得积分10
13秒前
gui完成签到,获得积分10
14秒前
这种完成签到,获得积分20
15秒前
xhuryts完成签到,获得积分10
15秒前
jiangcai完成签到,获得积分10
15秒前
yydragen应助小魏采纳,获得50
15秒前
袁钰琳完成签到 ,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950051
求助须知:如何正确求助?哪些是违规求助? 3495384
关于积分的说明 11076831
捐赠科研通 3225937
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867640
科研通“疑难数据库(出版商)”最低求助积分说明 800855