Development and validation of a machine learning–based model for varices screening in compensated cirrhosis (CHESS2001): an international multicenter study

医学 肝硬化 内科学 静脉曲张 多中心研究 医学物理学 普通外科 随机对照试验
作者
Yifei Huang,Jia Li,Tianlei Zheng,Dong Ji,Yu Jun Wong,Hong You,Ye Gu,Musong Li,Lili Zhao,Shuang Li,Shi Geng,Na Yang,Guofeng Chen,Yan Wang,Manoj Kumar,Ankur Jindal,Wei Qin,Zhenhuai Chen,Yongning Xin,Zicheng Jiang
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
卷期号:97 (3): 435-444.e2 被引量:9
标识
DOI:10.1016/j.gie.2022.10.018
摘要

Background and Aims

The prevalence of high-risk varices (HRV) is low among compensated cirrhotic patients undergoing EGD. Our study aimed to identify a novel machine learning (ML)-based model, named ML EGD, for ruling out HRV and avoiding unnecessary EGDs in patients with compensated cirrhosis.

Methods

An international cohort from 17 institutions from China, Singapore, and India were enrolled (CHESS2001). The variables with the top 3 importance scores (liver stiffness, platelet count, and total bilirubin) were selected by the Shapley additive explanation and input into a light gradient-boosting machine algorithm to develop ML EGD for identification of HRV. Furthermore, we built a web-based calculator for ML EGD, which is free with open access (http://www.pan-chess.cn/calculator/MLEGD_score). Unnecessary EGDs that were not performed and the rates of missed HRV were used to assess the efficacy and safety for varices screening.

Results

Of 2794 enrolled patients, 1283 patients formed a real-world cohort from 1 university hospital in China used to develop and internally validate the performance of ML EGD for varices screening. They were randomly assigned into the training (n = 1154) and validation (n = 129) cohorts with a ratio of 9:1. In the training cohort, ML EGD spared 607 (52.6%) unnecessary EGDs with a missed HRV rate of 3.6%. In the validation cohort, ML EGD spared 75 (58.1%) EGDs with a missed HRV rate of 1.4%. To externally test the performance of ML EGD, 966 patients from 14 university hospitals in China (test cohort 1) and 545 from 2 hospitals in Singapore and India (test cohort 2) comprised the 2 test cohorts. In test cohort 1, ML EGD spared 506 (52.4%) EGDs with a missed HRV rate of 2.8%. In test cohort 2, ML EGD spared 224 (41.1%) EGDs with a missed HRV rate of 3.1%. When compared with the Baveno VI criteria, ML EGD spared more screening EGDs in all cohorts (training cohort, 52.6% vs 29.4%; validation cohort, 58.1% vs 44.2%; test cohort 1, 52.4% vs 26.5%; test cohort 2, 41.1% vs 21.1%, respectively; P < .001).

Conclusions

We identified a novel model based on liver stiffness, platelet count, and total bilirubin, named ML EGD, as a free web-based calculator. ML EGD could efficiently help rule out HRV and avoid unnecessary EGDs in patients with compensated cirrhosis. (Clinical trial registration number: NCT04307264.)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Qijiezhou完成签到,获得积分10
1秒前
2秒前
2秒前
英姑应助科研通管家采纳,获得30
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
共享精神应助科研通管家采纳,获得10
3秒前
风清扬应助科研通管家采纳,获得30
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
李健应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
慕青应助科研通管家采纳,获得10
3秒前
梓歆发布了新的文献求助10
3秒前
3秒前
sookie发布了新的文献求助10
3秒前
3秒前
易安完成签到,获得积分10
4秒前
panpan发布了新的文献求助30
4秒前
4秒前
博ge发布了新的文献求助30
5秒前
5秒前
zty123发布了新的文献求助10
6秒前
bias完成签到,获得积分10
6秒前
思源应助拼搏起眸采纳,获得10
8秒前
酷炫笑翠发布了新的文献求助10
8秒前
眼圆广志完成签到,获得积分10
8秒前
humblelucas发布了新的文献求助10
8秒前
8秒前
Astoria完成签到,获得积分10
9秒前
9秒前
xx发布了新的文献求助10
9秒前
ZZ发布了新的文献求助10
9秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980154
求助须知:如何正确求助?哪些是违规求助? 3524160
关于积分的说明 11220159
捐赠科研通 3261641
什么是DOI,文献DOI怎么找? 1800734
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807232