重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

IDEAL: High-Order-Ensemble Adaptation Network for Learning with Noisy Labels

计算机科学 人工智能 噪音(视频) 分类器(UML) 机器学习 模式识别(心理学) 域适应 特征(语言学) 噪声数据 人工神经网络 数据挖掘 语言学 图像(数学) 哲学
作者
Peng-Fei Zhang,Zi Huang,Guangdong Bai,Xin-Shun Xu
标识
DOI:10.1145/3503161.3548053
摘要

Data annotations obtained for supervised learning often suffer from label noise, which would inevitably incur unreliable deep neural networks. Existing solutions to this problem typically limit the scope to instance-independent label noise. Due to the high illegibility of data and the inexperience of annotators, instance-dependent noise has also been widely observed, however, not being investigated. In this paper, we propose a novel \underlineIDE ntify and \underlineAL ign (IDEAL) methodology, which aims to eliminate the feature distribution shift raised by a broad spectrum of noise patterns. The proposed model is capable of learning noise-resilient feature representations, thereby correctly predicting data instances. More specifically, we formulate the robust learning against noisy labels as a domain adaptation problem by identifying noisy data (i.e., data samples with incorrect labels) and clean data from the dataset as two domains and minimizing their domain discrepancy in the feature space. In this framework, a high-order-ensemble adaptation network is devised to provide high-confidence predictions, according to which a specific criterion is defined for differentiating clean and noisy data. A new metric based on data augmentation is designed to measure the discrepancy between the clean and noisy domains. Along with a min-max learning strategy between the feature encoder and the classifier on the discrepancy, the domain gap will be bridged, which encourages a noise-resilient model. In-depth theoretical analysis and extensive experiments on widely-used benchmark datasets demonstrate the effectiveness of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xiaostou发布了新的文献求助10
1秒前
1秒前
等风的人发布了新的文献求助10
2秒前
浮游应助温柔的语柔采纳,获得10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
宣宣完成签到 ,获得积分10
4秒前
彭于晏应助勤劳母鸡采纳,获得10
4秒前
4秒前
子车茗应助壕仔采纳,获得20
4秒前
斯文败类应助张一二二二采纳,获得10
5秒前
5秒前
浮游应助vidi采纳,获得10
5秒前
AbnerWang完成签到,获得积分10
5秒前
PORCO发布了新的文献求助10
6秒前
6秒前
baibai发布了新的文献求助30
6秒前
6秒前
6秒前
科目三应助江流儿采纳,获得10
6秒前
科研通AI6应助内向的涵菡采纳,获得10
7秒前
7秒前
xym发布了新的文献求助10
7秒前
李健应助Roky-J采纳,获得10
7秒前
大佬完成签到,获得积分10
8秒前
8秒前
9秒前
Dr.向发布了新的文献求助10
9秒前
大模型应助从笙采纳,获得10
9秒前
10秒前
Taniiyn发布了新的文献求助10
10秒前
笨笨烨华完成签到 ,获得积分10
10秒前
yu发布了新的文献求助10
11秒前
传奇3应助俏皮短靴采纳,获得10
11秒前
11秒前
李爱国应助乐观的眼睛采纳,获得10
11秒前
传奇3应助沉默的钵钵鸡采纳,获得10
11秒前
Gaojin锦发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466189
求助须知:如何正确求助?哪些是违规求助? 4570151
关于积分的说明 14323225
捐赠科研通 4496641
什么是DOI,文献DOI怎么找? 2463456
邀请新用户注册赠送积分活动 1452353
关于科研通互助平台的介绍 1427516