IDEAL: High-Order-Ensemble Adaptation Network for Learning with Noisy Labels

计算机科学 人工智能 噪音(视频) 分类器(UML) 机器学习 模式识别(心理学) 域适应 特征(语言学) 噪声数据 人工神经网络 数据挖掘 语言学 图像(数学) 哲学
作者
Peng-Fei Zhang,Zi Huang,Guangdong Bai,Xin-Shun Xu
标识
DOI:10.1145/3503161.3548053
摘要

Data annotations obtained for supervised learning often suffer from label noise, which would inevitably incur unreliable deep neural networks. Existing solutions to this problem typically limit the scope to instance-independent label noise. Due to the high illegibility of data and the inexperience of annotators, instance-dependent noise has also been widely observed, however, not being investigated. In this paper, we propose a novel \underlineIDE ntify and \underlineAL ign (IDEAL) methodology, which aims to eliminate the feature distribution shift raised by a broad spectrum of noise patterns. The proposed model is capable of learning noise-resilient feature representations, thereby correctly predicting data instances. More specifically, we formulate the robust learning against noisy labels as a domain adaptation problem by identifying noisy data (i.e., data samples with incorrect labels) and clean data from the dataset as two domains and minimizing their domain discrepancy in the feature space. In this framework, a high-order-ensemble adaptation network is devised to provide high-confidence predictions, according to which a specific criterion is defined for differentiating clean and noisy data. A new metric based on data augmentation is designed to measure the discrepancy between the clean and noisy domains. Along with a min-max learning strategy between the feature encoder and the classifier on the discrepancy, the domain gap will be bridged, which encourages a noise-resilient model. In-depth theoretical analysis and extensive experiments on widely-used benchmark datasets demonstrate the effectiveness of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ddd发布了新的文献求助10
2秒前
weini发布了新的文献求助10
2秒前
Snieno发布了新的文献求助10
2秒前
123发布了新的文献求助10
3秒前
lu完成签到,获得积分10
3秒前
Jako完成签到 ,获得积分10
4秒前
4秒前
5秒前
6秒前
17完成签到 ,获得积分10
7秒前
7秒前
今后应助柒玖采纳,获得10
8秒前
loujiafei完成签到,获得积分10
8秒前
xx完成签到,获得积分10
8秒前
8秒前
9秒前
李小颜发布了新的文献求助10
9秒前
小马甲应助郭guoguo采纳,获得10
9秒前
10秒前
11秒前
11秒前
大气摩托完成签到,获得积分10
12秒前
高兴致远完成签到,获得积分10
13秒前
queengause发布了新的文献求助200
14秒前
14秒前
chengyu发布了新的文献求助10
16秒前
小二郎应助yaoguozhikkk采纳,获得10
16秒前
lu发布了新的文献求助10
16秒前
在水一方应助apple采纳,获得10
16秒前
大气摩托发布了新的文献求助10
16秒前
chujiu完成签到 ,获得积分10
17秒前
丘比特应助谢非凡采纳,获得10
17秒前
Jiang发布了新的文献求助10
17秒前
fiife应助悬铃木采纳,获得10
17秒前
zhc完成签到,获得积分10
17秒前
NexusExplorer应助震动的曲奇采纳,获得10
17秒前
17秒前
认真的寻绿完成签到,获得积分10
19秒前
鲁万仇完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589907
求助须知:如何正确求助?哪些是违规求助? 4674376
关于积分的说明 14793616
捐赠科研通 4629217
什么是DOI,文献DOI怎么找? 2532436
邀请新用户注册赠送积分活动 1501101
关于科研通互助平台的介绍 1468527