Evaluation of different machine learning approaches and aerosol optical depth in PM2.5 prediction

地球静止轨道 均方误差 环境科学 气溶胶 气象学 平均绝对误差 遥感 计算机科学 大气科学 统计 数学 卫星 地质学 物理 工程类 航空航天工程
作者
Hamed Karimian,Yaqian Li,Youliang Chen,Zhaoru Wang
出处
期刊:Environmental Research [Elsevier]
卷期号:216: 114465-114465 被引量:21
标识
DOI:10.1016/j.envres.2022.114465
摘要

Atmospheric Aerosol Optical Depth (AOD), derived from polar-orbiting satellites, has shown potential in PM2.5 predictions. However, this important source of data suffers from low temporal resolution. Recently, geostationary satellites provide AOD data in high temporal and spatial resolution. However, the feasibility of these data in PM2.5 prediction needs further study. In this paper, we analyzed the impact of AOD derived from Himawari-8 in PM2.5 predictions. Moreover, by combining wavelet, machine learning techniques, and minimum redundancy maximum relevance (mRMR), a novel hybrid model was proposed. The results showed that AOD missing rate over Yangtze River Delta region is the highest in Nanjing, Hefei, and Maanshan. In addition, missing rates are the lowest in winter and summer (∼80%). Moreover, we found that considering AOD, as an auxiliary variable in the model, could not improve the accuracy of PM2.5 predictions, and in some cases decreased it slightly. In comparison with other models, our proposed hybrid model showed higher prediction accuracy, R2 is improved by 11.64% on average, and root mean square error, mean absolute error, and mean absolute percentage error is reduced by 26.82%, 27.24%, and 29.88% respectively. This research provides a general overview of the availability of Himawari-8 AOD data and its feasibility in PM2.5 predictions. In addition, it evaluates different machine learning approaches in PM2.5 predictions. Our proposed framework can be used in other regions to predict different air pollutants concentrations and can be used as an aid for air pollution controlling programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tansl1989完成签到,获得积分10
刚刚
2秒前
LSX发布了新的文献求助10
2秒前
bkagyin应助火星上尔柳采纳,获得10
4秒前
4秒前
彭于晏应助华北第一深情采纳,获得10
5秒前
6秒前
今后应助追梦采纳,获得10
8秒前
8秒前
zzz发布了新的文献求助10
9秒前
飞羽发布了新的文献求助10
10秒前
11秒前
停停走走发布了新的文献求助10
13秒前
brainxue完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
一一应助科研通管家采纳,获得10
17秒前
希望天下0贩的0应助Zzoe_S采纳,获得10
17秒前
情怀应助科研通管家采纳,获得10
17秒前
Hello应助科研通管家采纳,获得10
17秒前
一一应助科研通管家采纳,获得10
17秒前
劲秉应助科研通管家采纳,获得30
17秒前
Jasper应助科研通管家采纳,获得10
17秒前
上官若男应助科研通管家采纳,获得10
17秒前
丘比特应助科研通管家采纳,获得10
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
理穆辛应助科研通管家采纳,获得10
17秒前
17秒前
隐形曼青应助停停走走采纳,获得10
17秒前
情怀应助栗荔采纳,获得10
19秒前
guozizi发布了新的文献求助30
19秒前
20秒前
Elvira完成签到,获得积分10
21秒前
夏青荷发布了新的文献求助10
21秒前
21秒前
追梦发布了新的文献求助10
21秒前
端庄的萝完成签到,获得积分10
21秒前
22秒前
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458976
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037422
捐赠科研通 2742859
什么是DOI,文献DOI怎么找? 1504561
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694589