An adaptive fuzzing method based on transformer and protocol similarity mutation

模糊测试 计算机科学 字节 缓冲区溢出 Modbus协议 传输控制协议 数据挖掘 人工智能 互联网 计算机网络 通信协议 程序设计语言 计算机硬件 软件 万维网
作者
Wenpeng Wang,Zhixiang Chen,Ziyang Zheng,Hui Wang
出处
期刊:Computers & Security [Elsevier]
卷期号:129: 103197-103197 被引量:2
标识
DOI:10.1016/j.cose.2023.103197
摘要

Industrial control protocols have a large number of vulnerabilities due to lacking authentication and misuse of function codes, which seriously threaten the production safety. Fuzzing, as a common method for vulnerability mining, has the disadvantages of low reception rate of generated test cases and blind mutation, which leads to poor vulnerability mining. To address these issues, we propose an adaptive fuzzing method based on Transformer and protocol similarity mutation. Firstly, the Transformer network is trained to learn the semantics information of the commonly used industrial control protocol Modbus TCP, which can generate test cases with a high reception rate in a short time. Secondly, during the test case generation stage, compare the semantic similarity and the size of random values between the newly generated bytes and the model input fields to determine whether to perform bit-flip mutation for the newly generated bytes, so as to reduce the overall similarity of the test cases and improve the test system abnormal rate. Finally, the byte importance self-adaptive algorithm is used to improve the mutation probability of bytes that are prone to trigger vulnerabilities. Experimental results indicate that compared with the traditional method, our method not only effectively improves the testing efficiency, but also increases the test system’s abnormal rate. In addition, the ability of vulnerability mining capability has been effectively improved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明亮白昼完成签到,获得积分10
刚刚
科目三应助xiaoxin采纳,获得10
刚刚
科研小废物完成签到,获得积分20
1秒前
热情的黑猫完成签到,获得积分10
1秒前
琪琪完成签到,获得积分10
1秒前
情怀应助song采纳,获得10
1秒前
1秒前
zxx发布了新的文献求助10
1秒前
Marvel发布了新的文献求助10
1秒前
小蘑材完成签到,获得积分10
2秒前
贪玩的傲菡完成签到 ,获得积分10
2秒前
彳亍1117应助科研小白鼠采纳,获得10
2秒前
笼中鸟完成签到,获得积分10
2秒前
Polaris发布了新的文献求助30
3秒前
3秒前
3秒前
tanghong发布了新的文献求助10
4秒前
maizencrna完成签到,获得积分10
4秒前
昌莆完成签到 ,获得积分10
4秒前
陈琳发布了新的文献求助10
4秒前
小蘑菇应助yqsf789采纳,获得10
5秒前
现代的雪珍完成签到,获得积分20
5秒前
积极如天完成签到,获得积分10
5秒前
5秒前
今天星期九完成签到,获得积分10
5秒前
5秒前
DenM7完成签到,获得积分10
5秒前
阔达的丹萱完成签到,获得积分10
5秒前
充电宝应助兔子采纳,获得10
5秒前
6秒前
7秒前
7秒前
8秒前
研自助完成签到,获得积分10
8秒前
科研通AI6应助百龄童采纳,获得10
8秒前
md完成签到 ,获得积分10
8秒前
梁平发布了新的文献求助10
8秒前
yyan完成签到,获得积分10
8秒前
XDA完成签到,获得积分20
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516957
求助须知:如何正确求助?哪些是违规求助? 4609934
关于积分的说明 14519101
捐赠科研通 4546890
什么是DOI,文献DOI怎么找? 2491407
邀请新用户注册赠送积分活动 1473077
关于科研通互助平台的介绍 1444956