An adaptive fuzzing method based on transformer and protocol similarity mutation

模糊测试 计算机科学 字节 缓冲区溢出 Modbus协议 传输控制协议 数据挖掘 人工智能 互联网 计算机网络 通信协议 程序设计语言 计算机硬件 软件 万维网
作者
Wenpeng Wang,Zhixiang Chen,Ziyang Zheng,Hui Wang
出处
期刊:Computers & Security [Elsevier]
卷期号:129: 103197-103197 被引量:2
标识
DOI:10.1016/j.cose.2023.103197
摘要

Industrial control protocols have a large number of vulnerabilities due to lacking authentication and misuse of function codes, which seriously threaten the production safety. Fuzzing, as a common method for vulnerability mining, has the disadvantages of low reception rate of generated test cases and blind mutation, which leads to poor vulnerability mining. To address these issues, we propose an adaptive fuzzing method based on Transformer and protocol similarity mutation. Firstly, the Transformer network is trained to learn the semantics information of the commonly used industrial control protocol Modbus TCP, which can generate test cases with a high reception rate in a short time. Secondly, during the test case generation stage, compare the semantic similarity and the size of random values between the newly generated bytes and the model input fields to determine whether to perform bit-flip mutation for the newly generated bytes, so as to reduce the overall similarity of the test cases and improve the test system abnormal rate. Finally, the byte importance self-adaptive algorithm is used to improve the mutation probability of bytes that are prone to trigger vulnerabilities. Experimental results indicate that compared with the traditional method, our method not only effectively improves the testing efficiency, but also increases the test system’s abnormal rate. In addition, the ability of vulnerability mining capability has been effectively improved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vcc完成签到 ,获得积分10
刚刚
夕荀发布了新的文献求助10
刚刚
安徒生完成签到,获得积分10
1秒前
1秒前
无语完成签到,获得积分10
1秒前
周周发布了新的文献求助10
2秒前
2秒前
希望天下0贩的0应助彳亍采纳,获得10
2秒前
林炎发布了新的文献求助10
2秒前
小羽完成签到 ,获得积分10
3秒前
4秒前
追寻紫夏完成签到 ,获得积分10
4秒前
霸气的菠萝完成签到,获得积分10
4秒前
Wen完成签到,获得积分10
4秒前
开放青旋应助苏silence采纳,获得80
4秒前
5秒前
yu完成签到 ,获得积分10
5秒前
Lucifer完成签到,获得积分10
5秒前
5秒前
5秒前
11完成签到,获得积分10
5秒前
scanker1981完成签到,获得积分10
5秒前
深情安青应助zhaopenghui采纳,获得10
6秒前
小星星完成签到 ,获得积分10
6秒前
600完成签到,获得积分10
6秒前
guohh完成签到,获得积分10
6秒前
7秒前
隐形白开水完成签到,获得积分0
7秒前
sakura完成签到,获得积分10
7秒前
gouqi发布了新的文献求助10
7秒前
饱满的曼寒完成签到,获得积分10
7秒前
CipherSage应助小勇仔采纳,获得10
8秒前
无心科研完成签到,获得积分10
8秒前
8秒前
9秒前
清秀迎彤完成签到 ,获得积分10
9秒前
bkagyin应助空空伊采纳,获得30
9秒前
热心雨南完成签到,获得积分10
9秒前
9秒前
wxxz发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034