An adaptive fuzzing method based on transformer and protocol similarity mutation

模糊测试 计算机科学 字节 缓冲区溢出 Modbus协议 传输控制协议 数据挖掘 人工智能 互联网 计算机网络 通信协议 程序设计语言 计算机硬件 软件 万维网
作者
Wenpeng Wang,Zhixiang Chen,Ziyang Zheng,Hui Wang
出处
期刊:Computers & Security [Elsevier]
卷期号:129: 103197-103197 被引量:2
标识
DOI:10.1016/j.cose.2023.103197
摘要

Industrial control protocols have a large number of vulnerabilities due to lacking authentication and misuse of function codes, which seriously threaten the production safety. Fuzzing, as a common method for vulnerability mining, has the disadvantages of low reception rate of generated test cases and blind mutation, which leads to poor vulnerability mining. To address these issues, we propose an adaptive fuzzing method based on Transformer and protocol similarity mutation. Firstly, the Transformer network is trained to learn the semantics information of the commonly used industrial control protocol Modbus TCP, which can generate test cases with a high reception rate in a short time. Secondly, during the test case generation stage, compare the semantic similarity and the size of random values between the newly generated bytes and the model input fields to determine whether to perform bit-flip mutation for the newly generated bytes, so as to reduce the overall similarity of the test cases and improve the test system abnormal rate. Finally, the byte importance self-adaptive algorithm is used to improve the mutation probability of bytes that are prone to trigger vulnerabilities. Experimental results indicate that compared with the traditional method, our method not only effectively improves the testing efficiency, but also increases the test system’s abnormal rate. In addition, the ability of vulnerability mining capability has been effectively improved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cloudz完成签到,获得积分10
刚刚
香蕉觅云应助LYB吕采纳,获得10
刚刚
ql关闭了ql文献求助
刚刚
1秒前
Phoo发布了新的文献求助10
1秒前
1秒前
芬栀发布了新的文献求助10
1秒前
2秒前
2秒前
old赵应助一线忧思采纳,获得20
2秒前
Lucas应助ff采纳,获得10
2秒前
October完成签到 ,获得积分10
3秒前
3秒前
BouncyTree发布了新的文献求助10
5秒前
hylqj123发布了新的文献求助10
5秒前
林间发布了新的文献求助10
6秒前
6秒前
Twonej应助沧笙踏歌采纳,获得50
6秒前
轻松钢铁侠完成签到,获得积分10
6秒前
zhangyi发布了新的文献求助10
7秒前
7秒前
情怀应助岚风采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
嘟嘟嘟完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
领导范儿应助木木采纳,获得10
11秒前
林间完成签到,获得积分10
11秒前
Gjjjjjjj完成签到,获得积分20
12秒前
12秒前
搜集达人应助ZZZ采纳,获得10
12秒前
科研通AI6.1应助Royalll采纳,获得10
12秒前
12秒前
12秒前
伶俐的冬易完成签到,获得积分10
13秒前
蓝天应助时尚冬亦采纳,获得10
13秒前
Ripples完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106