An adaptive fuzzing method based on transformer and protocol similarity mutation

模糊测试 计算机科学 字节 缓冲区溢出 Modbus协议 传输控制协议 数据挖掘 人工智能 互联网 计算机网络 通信协议 程序设计语言 计算机硬件 软件 万维网
作者
Wenpeng Wang,Zhixiang Chen,Ziyang Zheng,Hui Wang
出处
期刊:Computers & Security [Elsevier]
卷期号:129: 103197-103197 被引量:2
标识
DOI:10.1016/j.cose.2023.103197
摘要

Industrial control protocols have a large number of vulnerabilities due to lacking authentication and misuse of function codes, which seriously threaten the production safety. Fuzzing, as a common method for vulnerability mining, has the disadvantages of low reception rate of generated test cases and blind mutation, which leads to poor vulnerability mining. To address these issues, we propose an adaptive fuzzing method based on Transformer and protocol similarity mutation. Firstly, the Transformer network is trained to learn the semantics information of the commonly used industrial control protocol Modbus TCP, which can generate test cases with a high reception rate in a short time. Secondly, during the test case generation stage, compare the semantic similarity and the size of random values between the newly generated bytes and the model input fields to determine whether to perform bit-flip mutation for the newly generated bytes, so as to reduce the overall similarity of the test cases and improve the test system abnormal rate. Finally, the byte importance self-adaptive algorithm is used to improve the mutation probability of bytes that are prone to trigger vulnerabilities. Experimental results indicate that compared with the traditional method, our method not only effectively improves the testing efficiency, but also increases the test system’s abnormal rate. In addition, the ability of vulnerability mining capability has been effectively improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助魏伯安采纳,获得10
1秒前
哈密哈密完成签到,获得积分10
1秒前
1秒前
Ava应助浪迹天涯采纳,获得10
1秒前
2秒前
安南发布了新的文献求助10
2秒前
3秒前
healthy完成签到 ,获得积分10
3秒前
4秒前
刘大可完成签到,获得积分10
4秒前
7秒前
su发布了新的文献求助10
7秒前
rookie发布了新的文献求助10
8秒前
方勇飞发布了新的文献求助10
9秒前
郭菱香完成签到 ,获得积分20
9秒前
皮念寒完成签到,获得积分10
9秒前
顺其自然_666888完成签到,获得积分10
9秒前
10秒前
向上的小v完成签到 ,获得积分10
11秒前
11秒前
13秒前
酷酷紫蓝完成签到 ,获得积分10
13秒前
13秒前
方勇飞完成签到,获得积分10
13秒前
LYZ完成签到,获得积分10
13秒前
黄景滨完成签到 ,获得积分20
14秒前
14秒前
123456完成签到,获得积分20
14秒前
hkl1542完成签到,获得积分10
15秒前
15秒前
caohuijun发布了新的文献求助10
16秒前
杳鸢应助韦颖采纳,获得20
17秒前
17秒前
wshwx完成签到 ,获得积分10
17秒前
17秒前
魏伯安发布了新的文献求助10
18秒前
18秒前
传奇3应助daniel采纳,获得10
18秒前
ding应助帅气的听莲采纳,获得10
18秒前
sunshine完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824