An adaptive fuzzing method based on transformer and protocol similarity mutation

模糊测试 计算机科学 字节 缓冲区溢出 Modbus协议 传输控制协议 数据挖掘 人工智能 互联网 计算机网络 通信协议 程序设计语言 计算机硬件 软件 万维网
作者
Wenpeng Wang,Zhixiang Chen,Ziyang Zheng,Hui Wang
出处
期刊:Computers & Security [Elsevier]
卷期号:129: 103197-103197 被引量:2
标识
DOI:10.1016/j.cose.2023.103197
摘要

Industrial control protocols have a large number of vulnerabilities due to lacking authentication and misuse of function codes, which seriously threaten the production safety. Fuzzing, as a common method for vulnerability mining, has the disadvantages of low reception rate of generated test cases and blind mutation, which leads to poor vulnerability mining. To address these issues, we propose an adaptive fuzzing method based on Transformer and protocol similarity mutation. Firstly, the Transformer network is trained to learn the semantics information of the commonly used industrial control protocol Modbus TCP, which can generate test cases with a high reception rate in a short time. Secondly, during the test case generation stage, compare the semantic similarity and the size of random values between the newly generated bytes and the model input fields to determine whether to perform bit-flip mutation for the newly generated bytes, so as to reduce the overall similarity of the test cases and improve the test system abnormal rate. Finally, the byte importance self-adaptive algorithm is used to improve the mutation probability of bytes that are prone to trigger vulnerabilities. Experimental results indicate that compared with the traditional method, our method not only effectively improves the testing efficiency, but also increases the test system’s abnormal rate. In addition, the ability of vulnerability mining capability has been effectively improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maxwell158发布了新的文献求助10
刚刚
1秒前
hhh发布了新的文献求助10
1秒前
2秒前
不懂白完成签到 ,获得积分10
2秒前
3秒前
cjm发布了新的文献求助10
3秒前
Ava应助jack采纳,获得10
3秒前
Jiangpeng完成签到,获得积分10
3秒前
3秒前
lhy12345完成签到 ,获得积分10
4秒前
可爱的函函应助Evander采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
4秒前
852应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
愉快的花卷完成签到,获得积分10
4秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
醉熏的天薇完成签到,获得积分10
5秒前
5秒前
Orange应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得30
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420180
求助须知:如何正确求助?哪些是违规求助? 4535297
关于积分的说明 14149461
捐赠科研通 4452280
什么是DOI,文献DOI怎么找? 2442103
邀请新用户注册赠送积分活动 1433615
关于科研通互助平台的介绍 1410869