放牧
草原
农学
多年生植物
环境科学
植物群落
耕作
土壤碳
生态学
保护性放牧
草原
生物
物种丰富度
土壤水分
作者
Junhu Su,Weihong Ji,Xiaomei Sun,Haifang Wang,Yukun Kang,Baohui Yao
标识
DOI:10.1016/j.jenvman.2022.116859
摘要
Management practices, such as grazing exclusion and reseeding, have been implemented to mitigate the degradation of grassland. Low grazing intensities and reseeding increase grass production. Nevertheless, few studies have investigated the effects of these measures on the soil microbial community structure and function in the Qinghai Tibetan Plateau (QTP). To reveal the effects of management practices on soil microbes and give a reference to assess and improve ecosystems functions, we here evaluated the impact of various types of grazing (exclusion, seasonal, and traditional), reseeding (annual oat (Avena fatua) grassland (RO) and perennial artificial grassland cultivated >10 y), and integrated restoration (weed control and no-tillage reseeding) measures on soil microbial community structure and function in the QTP. The Shannon-Wiener diversity indices were highest for prokaryotes under RO and for fungi under integrated grassland restoration. Relative Actinobacteria abundance was higher under seasonal grazing than that under integrated grassland restoration. The latter had relatively higher abundances of Betaproteobacteria, Alphaproteobacteria, and Deltaproteobacteria and comparatively lower abundance of Thermoleophilia. There were significantly higher abundances of plant pathogens under seasonal grazing than those under other managements. There were significantly high proportions of pathotrophs and saprotrophs (10.0%) under seasonal and traditional grazing, respectively. The proportion of pathotrophs under integrated restoration (10.0%) was about seven-fold greater than that under grazing exclusion (1.5%). The relative differences among treatments in terms of soil water content, plant biomass, and soil C:N partially explained the differences in their prokaryotic community compositions. Increases in soil organic carbon and C:N may explain the observed changes in the soil fungal communities. The management practices affected soil microorganisms mainly by altering the soil nutrient profile. Grazing attracted specific pathotrophs and saprotrophs while repelling certain plant pathogens. Hence, modulations in soil microbial community structure and function must be considered in the process of planning for the implementation of grassland degradation management measures.
科研通智能强力驱动
Strongly Powered by AbleSci AI