Deep learning for predicting major pathological response to neoadjuvant chemoimmunotherapy in non-small cell lung cancer: A multicentre study

化学免疫疗法 医学 队列 内科学 肿瘤科 深度学习 新辅助治疗 癌症 人工智能 乳腺癌 计算机科学 免疫疗法
作者
Yunlang She,Bingxi He,Fang Wang,Yifan Zhong,Tingting Wang,Zhenchuan Liu,Minglei Yang,Bentong Yu,Jiajun Deng,Xiwen Sun,Chunyan Wu,Likun Hou,Yuming Zhu,Yang Yang,Hongjie Hu,Di Dong,Chang Chen,Jie Tian
出处
期刊:EBioMedicine [Elsevier]
卷期号:86: 104364-104364 被引量:43
标识
DOI:10.1016/j.ebiom.2022.104364
摘要

BackgroundThis study, based on multicentre cohorts, aims to utilize computed tomography (CT) images to construct a deep learning model for predicting major pathological response (MPR) to neoadjuvant chemoimmunotherapy in non-small cell lung cancer (NSCLC) and further explore the biological basis under its prediction.Methods274 patients undergoing curative surgery after neoadjuvant chemoimmunotherapy for NSCLC at 4 centres from January 2019 to December 2021 were included and divided into a training cohort, an internal validation cohort, and an external validation cohort. ShuffleNetV2x05-based features of the primary tumour on the CT scans within the 2 weeks preceding neoadjuvant administration were employed to develop a deep learning score for distinguishing MPR and non-MPR. To reveal the underlying biological basis of the deep learning score, a genetic analysis was conducted based on 25 patients with RNA-sequencing data.FindingsMPR was achieved in 54.0% (n = 148) patients. The area under the curve (AUC) of the deep learning score to predict MPR was 0.73 (95% confidence interval [CI]: 0.58–0.86) and 0.72 (95% CI: 0.58–0.85) in the internal validation and external validation cohorts, respectively. After integrating the clinical characteristic into the deep learning score, the combined model achieved satisfactory performance in the internal validation (AUC: 0.77, 95% CI: 0.64–0.89) and external validation cohorts (AUC: 0.75, 95% CI: 0.62–0.87). In the biological basis exploration for the deep learning score, a high deep learning score was associated with the downregulation of pathways mediating tumour proliferation and the promotion of antitumour immune cell infiltration in the microenvironment.InterpretationThe proposed deep learning model could effectively predict MPR in NSCLC patients treated with neoadjuvant chemoimmunotherapy.FundingThis study was supported by National Key Research and Development Program of China, China (2017YFA0205200); National Natural Science Foundation of China, China (91959126, 82022036, 91959130, 81971776, 81771924, 6202790004, 81930053, 9195910169, 62176013, 8210071009); Beijing Natural Science Foundation, China (L182061); Strategic Priority Research Program of Chinese Academy of Sciences, China (XDB38040200); Chinese Academy of Sciences, China (GJJSTD20170004, QYZDJ-SSW-JSC005); Shanghai Hospital Development Center, China (SHDC2020CR3047B); and Science and Technology Commission of Shanghai Municipality, China (21YF1438200).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纯真的晴儿完成签到 ,获得积分10
刚刚
1秒前
美好的大白完成签到,获得积分10
1秒前
桐桐应助zy采纳,获得10
1秒前
2秒前
顺利秋灵发布了新的文献求助10
3秒前
3秒前
fztnh完成签到,获得积分10
3秒前
4秒前
5秒前
余琳发布了新的文献求助200
6秒前
7秒前
SciGPT应助cduv采纳,获得80
7秒前
8秒前
9秒前
躺躺躺发布了新的文献求助10
9秒前
不语完成签到,获得积分10
9秒前
zidan007发布了新的文献求助10
9秒前
玫瑰完成签到,获得积分10
9秒前
顾矜应助顺利秋灵采纳,获得10
9秒前
lyh应助SL采纳,获得20
11秒前
12秒前
淡定小蜜蜂完成签到,获得积分10
13秒前
RXY发布了新的文献求助30
13秒前
pan完成签到,获得积分10
13秒前
谦让成协发布了新的文献求助10
14秒前
zidan007完成签到,获得积分10
15秒前
lyh应助不怕物理采纳,获得10
16秒前
afterall发布了新的文献求助10
16秒前
爆米花应助躺躺躺采纳,获得10
18秒前
科研通AI5应助yueyan采纳,获得10
18秒前
20秒前
仁爱青文完成签到 ,获得积分10
20秒前
21秒前
NexusExplorer应助111采纳,获得10
21秒前
22秒前
GRJ发布了新的文献求助10
23秒前
25秒前
迷路以筠发布了新的文献求助10
25秒前
Owen应助ay采纳,获得10
26秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483894
求助须知:如何正确求助?哪些是违规求助? 3073070
关于积分的说明 9129389
捐赠科研通 2764810
什么是DOI,文献DOI怎么找? 1517349
邀请新用户注册赠送积分活动 702089
科研通“疑难数据库(出版商)”最低求助积分说明 700954