亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting leptomeningeal disease spread after resection of brain metastases using machine learning

医学 逻辑回归 递归分区 比例危险模型 随机森林 队列 机器学习 人工智能 外科 内科学 计算机科学
作者
Ishaan Ashwini Tewarie,Alexander W. Senko,Charissa Jessurun,Abigail Tianai Zhang,Alexander Hulsbergen,Luis Fernando Rendón,Jack McNulty,Marike L. D. Broekman,Luke Peng,Timothy R. Smith,John G. Phillips
出处
期刊:Journal of Neurosurgery [Journal of Neurosurgery Publishing Group]
卷期号:: 1-9 被引量:5
标识
DOI:10.3171/2022.8.jns22744
摘要

OBJECTIVE The incidence of leptomeningeal disease (LMD) has increased as treatments for brain metastases (BMs) have improved and patients with metastatic disease are living longer. Sample sizes of individual studies investigating LMD after surgery for BMs and its risk factors have been limited, ranging from 200 to 400 patients at risk for LMD, which only allows the use of conventional biostatistics. Here, the authors used machine learning techniques to enhance LMD prediction in a cohort of surgically treated BMs. METHODS A conditional survival forest, a Cox proportional hazards model, an extreme gradient boosting (XGBoost) classifier, an extra trees classifier, and logistic regression were trained. A synthetic minority oversampling technique (SMOTE) was used to train the models and handle the inherent class imbalance. Patients were divided into an 80:20 training and test set. Fivefold cross-validation was used on the training set for hyperparameter optimization. Patients eligible for study inclusion were adults who had consecutively undergone neurosurgical BM treatment, had been admitted to Brigham and Women’s Hospital from January 2007 through December 2019, and had a minimum of 1 month of follow-up after neurosurgical treatment. RESULTS A total of 1054 surgically treated BM patients were included in this analysis. LMD occurred in 168 patients (15.9%) at a median of 7.05 months after BM diagnosis. The discrimination of LMD occurrence was optimal using an XGboost algorithm (area under the curve = 0.83), and the time to LMD was prognosticated evenly by the random forest algorithm and the Cox proportional hazards model (C-index = 0.76). The most important feature for both LMD classification and regression was the BM proximity to the CSF space, followed by a cerebellar BM location. Lymph node metastasis of the primary tumor at BM diagnosis and a cerebellar BM location were the strongest risk factors for both LMD occurrence and time to LMD. CONCLUSIONS The outcomes of LMD patients in the BM population are predictable using SMOTE and machine learning. Lymph node metastasis of the primary tumor at BM diagnosis and a cerebellar BM location were the strongest LMD risk factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daishuheng完成签到 ,获得积分10
4秒前
5秒前
张同学快去做实验呀完成签到,获得积分10
7秒前
耳朵儿歌完成签到 ,获得积分10
8秒前
w.h发布了新的文献求助10
8秒前
YJM应助十七。采纳,获得10
9秒前
10秒前
hqwesd发布了新的文献求助10
14秒前
15秒前
18秒前
孙远欣完成签到,获得积分10
18秒前
Murphy发布了新的文献求助10
19秒前
CyrusSo524完成签到,获得积分10
20秒前
孙远欣发布了新的文献求助10
21秒前
尼古拉斯大唯完成签到,获得积分10
22秒前
大模型应助牙线棒棒哒采纳,获得10
29秒前
想要赚大钱完成签到 ,获得积分10
30秒前
优美的谷完成签到,获得积分10
31秒前
丿夜幕灬降临丨完成签到,获得积分10
36秒前
40秒前
41秒前
nnnn完成签到,获得积分20
42秒前
颢懿完成签到 ,获得积分10
44秒前
45秒前
华理附院孙文博完成签到 ,获得积分10
45秒前
45秒前
Rn完成签到 ,获得积分10
47秒前
HYQ完成签到 ,获得积分10
48秒前
识趣完成签到,获得积分10
50秒前
holen完成签到,获得积分10
1分钟前
惠飞薇完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
就有提高完成签到,获得积分10
1分钟前
坚定寻真发布了新的文献求助10
1分钟前
VDC应助科研通管家采纳,获得30
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
1分钟前
king发布了新的文献求助10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544354
求助须知:如何正确求助?哪些是违规求助? 3121546
关于积分的说明 9347794
捐赠科研通 2819801
什么是DOI,文献DOI怎么找? 1550452
邀请新用户注册赠送积分活动 722526
科研通“疑难数据库(出版商)”最低求助积分说明 713273