Artificial intelligence-based methods for fusion of electronic health records and imaging data

计算机科学 健康档案 传感器融合 人工智能 融合 数据挖掘 数据科学 医疗保健 语言学 哲学 经济 经济增长
作者
Farida Mohsen,Hazrat Ali,Nady El Hajj,Zubair Shah
出处
期刊:Scientific Reports [Springer Nature]
卷期号:12 (1) 被引量:69
标识
DOI:10.1038/s41598-022-22514-4
摘要

Healthcare data are inherently multimodal, including electronic health records (EHR), medical images, and multi-omics data. Combining these multimodal data sources contributes to a better understanding of human health and provides optimal personalized healthcare. The most important question when using multimodal data is how to fuse them-a field of growing interest among researchers. Advances in artificial intelligence (AI) technologies, particularly machine learning (ML), enable the fusion of these different data modalities to provide multimodal insights. To this end, in this scoping review, we focus on synthesizing and analyzing the literature that uses AI techniques to fuse multimodal medical data for different clinical applications. More specifically, we focus on studies that only fused EHR with medical imaging data to develop various AI methods for clinical applications. We present a comprehensive analysis of the various fusion strategies, the diseases and clinical outcomes for which multimodal fusion was used, the ML algorithms used to perform multimodal fusion for each clinical application, and the available multimodal medical datasets. We followed the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) guidelines. We searched Embase, PubMed, Scopus, and Google Scholar to retrieve relevant studies. After pre-processing and screening, we extracted data from 34 studies that fulfilled the inclusion criteria. We found that studies fusing imaging data with EHR are increasing and doubling from 2020 to 2021. In our analysis, a typical workflow was observed: feeding raw data, fusing different data modalities by applying conventional machine learning (ML) or deep learning (DL) algorithms, and finally, evaluating the multimodal fusion through clinical outcome predictions. Specifically, early fusion was the most used technique in most applications for multimodal learning (22 out of 34 studies). We found that multimodality fusion models outperformed traditional single-modality models for the same task. Disease diagnosis and prediction were the most common clinical outcomes (reported in 20 and 10 studies, respectively) from a clinical outcome perspective. Neurological disorders were the dominant category (16 studies). From an AI perspective, conventional ML models were the most used (19 studies), followed by DL models (16 studies). Multimodal data used in the included studies were mostly from private repositories (21 studies). Through this scoping review, we offer new insights for researchers interested in knowing the current state of knowledge within this research field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情的谷秋完成签到,获得积分10
刚刚
刚刚
li发布了新的文献求助10
刚刚
1秒前
ycsqz发布了新的文献求助10
1秒前
gungun发布了新的文献求助10
1秒前
1秒前
2秒前
yuHS完成签到,获得积分10
2秒前
2秒前
清脆安南发布了新的文献求助10
3秒前
biubiuxue完成签到,获得积分10
3秒前
3秒前
4秒前
aka2012发布了新的文献求助10
4秒前
yar应助小巧的怜晴采纳,获得10
4秒前
4秒前
4秒前
5秒前
小芙爱雪碧完成签到 ,获得积分10
6秒前
沉静的友灵完成签到,获得积分10
6秒前
6秒前
胡子木发布了新的文献求助10
6秒前
hmhu发布了新的文献求助10
7秒前
Lynie完成签到,获得积分10
7秒前
li完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
无花果应助CNS_Fighter88采纳,获得10
9秒前
lize5493发布了新的文献求助10
9秒前
周周发布了新的文献求助10
10秒前
一二发布了新的文献求助10
10秒前
edward完成签到,获得积分10
10秒前
今后应助山娃子采纳,获得10
10秒前
10秒前
11秒前
11秒前
栗子发布了新的文献求助10
11秒前
zyj完成签到,获得积分10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3300503
求助须知:如何正确求助?哪些是违规求助? 2935166
关于积分的说明 8472075
捐赠科研通 2608856
什么是DOI,文献DOI怎么找? 1424405
科研通“疑难数据库(出版商)”最低求助积分说明 662011
邀请新用户注册赠送积分活动 645730