Test Problems for Large-Scale Multiobjective and Many-Objective Optimization

多目标优化 最优化问题 数学优化 进化计算 优化测试函数 计算机科学 集合(抽象数据类型) 比例(比率) 进化算法 数学 多群优化 量子力学 物理 程序设计语言
作者
Ran Cheng,Yaochu Jin,Markus Olhofer,Bernhard Sendhoff
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:47 (12): 4108-4121 被引量:286
标识
DOI:10.1109/tcyb.2016.2600577
摘要

The interests in multiobjective and many-objective optimization have been rapidly increasing in the evolutionary computation community. However, most studies on multiobjective and many-objective optimization are limited to small-scale problems, despite the fact that many real-world multiobjective and many-objective optimization problems may involve a large number of decision variables. As has been evident in the history of evolutionary optimization, the development of evolutionary algorithms (EAs) for solving a particular type of optimization problems has undergone a co-evolution with the development of test problems. To promote the research on large-scale multiobjective and many-objective optimization, we propose a set of generic test problems based on design principles widely used in the literature of multiobjective and many-objective optimization. In order for the test problems to be able to reflect challenges in real-world applications, we consider mixed separability between decision variables and nonuniform correlation between decision variables and objective functions. To assess the proposed test problems, six representative evolutionary multiobjective and many-objective EAs are tested on the proposed test problems. Our empirical results indicate that although the compared algorithms exhibit slightly different capabilities in dealing with the challenges in the test problems, none of them are able to efficiently solve these optimization problems, calling for the need for developing new EAs dedicated to large-scale multiobjective and many-objective optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
苏安莲发布了新的文献求助10
1秒前
1秒前
3秒前
3秒前
4秒前
fsj发布了新的文献求助30
5秒前
jinqihui发布了新的文献求助10
5秒前
Singularity应助甜蜜瑾瑜采纳,获得10
6秒前
6秒前
6秒前
7秒前
百年孤独完成签到,获得积分10
7秒前
东方耀发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
9秒前
Vincent发布了新的文献求助10
9秒前
9秒前
dbzdq发布了新的文献求助10
9秒前
10秒前
11秒前
马绍清发布了新的文献求助10
11秒前
ZG发布了新的文献求助10
12秒前
Yunpeng Cai发布了新的文献求助10
13秒前
小葡萄发布了新的文献求助10
13秒前
pumpkin发布了新的文献求助30
13秒前
jinqihui完成签到,获得积分10
13秒前
风中浩天发布了新的文献求助10
14秒前
14秒前
龙俊利发布了新的文献求助10
14秒前
17秒前
17秒前
八九发布了新的文献求助10
18秒前
壮观的访枫完成签到 ,获得积分10
18秒前
无问完成签到,获得积分10
18秒前
炸你的泡泡糖完成签到,获得积分10
19秒前
豆包发布了新的文献求助100
19秒前
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154309
求助须知:如何正确求助?哪些是违规求助? 2805114
关于积分的说明 7863632
捐赠科研通 2463326
什么是DOI,文献DOI怎么找? 1311205
科研通“疑难数据库(出版商)”最低求助积分说明 629506
版权声明 601821