多目标优化
最优化问题
数学优化
进化计算
优化测试函数
计算机科学
集合(抽象数据类型)
比例(比率)
进化算法
数学
多群优化
量子力学
物理
程序设计语言
作者
Ran Cheng,Yaochu Jin,Markus Olhofer,Bernhard Sendhoff
出处
期刊:IEEE transactions on cybernetics
[Institute of Electrical and Electronics Engineers]
日期:2016-08-26
卷期号:47 (12): 4108-4121
被引量:286
标识
DOI:10.1109/tcyb.2016.2600577
摘要
The interests in multiobjective and many-objective optimization have been rapidly increasing in the evolutionary computation community. However, most studies on multiobjective and many-objective optimization are limited to small-scale problems, despite the fact that many real-world multiobjective and many-objective optimization problems may involve a large number of decision variables. As has been evident in the history of evolutionary optimization, the development of evolutionary algorithms (EAs) for solving a particular type of optimization problems has undergone a co-evolution with the development of test problems. To promote the research on large-scale multiobjective and many-objective optimization, we propose a set of generic test problems based on design principles widely used in the literature of multiobjective and many-objective optimization. In order for the test problems to be able to reflect challenges in real-world applications, we consider mixed separability between decision variables and nonuniform correlation between decision variables and objective functions. To assess the proposed test problems, six representative evolutionary multiobjective and many-objective EAs are tested on the proposed test problems. Our empirical results indicate that although the compared algorithms exhibit slightly different capabilities in dealing with the challenges in the test problems, none of them are able to efficiently solve these optimization problems, calling for the need for developing new EAs dedicated to large-scale multiobjective and many-objective optimization.
科研通智能强力驱动
Strongly Powered by AbleSci AI