Deep Eutectic Solvents: Sustainable Media for Nanoscale and Functional Materials

离子液体 超分子化学 共晶体系 氢键 材料科学 纳米材料 纳米技术 化学工程 化学 有机化学 分子 合金 催化作用 工程类
作者
Durgesh V. Wagle,Hua Zhao,Gary A. Baker
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:47 (8): 2299-2308 被引量:779
标识
DOI:10.1021/ar5000488
摘要

ConspectusDeep eutectic solvents (DESs) represent an alternative class of ionic fluids closely resembling room-temperature ionic liquids (RTILs), although, strictly speaking, they are distinguished by the fact that they also contain an organic molecular component (typically, a hydrogen bond donor like a urea, amide, acid, or polyol), frequently as the predominant constituent. Practically speaking, DESs are attractive alternatives to RTILs, sharing most of their remarkable qualities (e.g., tolerance to humidity, negligible vapor pressure, thermostability, wide electrochemical potential windows, tunability) while overcoming several limitations associated with their RTIL cousins. Particularly, DESs are typically, less expensive, more synthetically accessible (typically, from bulk commodity chemicals using solvent/waste-free processes), nontoxic, and biodegradable.In this Account, we provide an overview of DESs as designer solvents to create well-defined nanomaterials including shape-controlled nanoparticles, electrodeposited films, metal–organic frameworks, colloidal assemblies, hierarchically porous carbons, and DNA/RNA architectures. These breakthroughs illustrate how DESs can fulfill multiple roles in directing chemistry at the nanoscale: acting as supramolecular template, metal/carbon source, sacrificial agent (e.g., ammonia release from urea), and/or redox agent, all in the absence of formal stabilizing ligand (here, solvent and stabilizer are one and the same).The ability to tailor the physicochemical properties of DESs is central to controlling their interfacial behavior. The preorganized "supramolecular" nature of DESs provides a soft template to guide the formation of bimodal porous carbon networks or the evolution of electrodeposits. A number of essential parameters (viscosity, polarity, surface tension, hydrogen bonding), plus coordination with solutes/surfaces, all play significant roles in modulating species reactivity and mass transport properties governing the genesis of nanostructure. Furthermore, DES components may modulate nucleation and growth mechanisms by charge neutralization, modification of reduction potentials (or chemical activities), and passivation of particular crystal faces, dictating growth along preferred crystallographic directions. Broad operational windows for electrochemical reactions coupled with their inherent ionic nature facilitate the electrodeposition of alloys and semiconductors inaccessible to classical means and the use of cosolvents or applied potential control provide under-explored strategies for mediating interfacial interactions leading to control over film characteristics.The biocompatibility of DESs suggests intriguing potential for the construction of biomolecular architectures in these novel media. It has been demonstrated that nucleic acid structures can be manipulated in the ionic, crowded, dehydrating (low water activity) DES environment—including the adoption of duplex helical structures divergent from the canonical B form and parallel G-quadruplex DNA persisting near water's boiling point—challenging the misconception that water is a necessity for maintenance of nucleic acid structure/functionality and suggesting an enticing trajectory toward DNA/RNA-based nanocatalysis within a strictly anhydrous medium.DESs offer tremendous opportunities and open intriguing perspectives for generating sophisticated nanostructures within an anhydrous or low-water medium. We conclude this Account by offering our thoughts on the evolution of the field, pointing to areas of clear and compelling utility which will surely see fruition in the coming years. Finally, we highlight a few hurdles (e.g., need for a universal nomenclature, absence of water-immiscible, oriented-phase, and low-viscosity DESs) which, once navigated, will hasten progress in this area.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助茉莉采纳,获得10
1秒前
1秒前
风清扬发布了新的文献求助10
2秒前
zhaoty发布了新的文献求助10
3秒前
小蘑菇应助曼容采纳,获得10
3秒前
冷静未来完成签到,获得积分10
4秒前
积极松鼠完成签到,获得积分10
5秒前
5秒前
5秒前
mufulee完成签到,获得积分10
5秒前
荞栎完成签到,获得积分10
6秒前
沉淀发布了新的文献求助10
6秒前
小马甲应助ab采纳,获得10
7秒前
科研通AI6应助上官采纳,获得10
7秒前
Wicky完成签到,获得积分10
7秒前
陈陈潇发布了新的文献求助20
7秒前
7秒前
8秒前
9秒前
10秒前
10秒前
侯总应助kingwill采纳,获得30
10秒前
11秒前
Utingg完成签到,获得积分10
11秒前
12秒前
沉默天宇发布了新的文献求助10
13秒前
13秒前
火星上觅珍完成签到,获得积分10
15秒前
pddl关注了科研通微信公众号
15秒前
Zx_1993应助周凯采纳,获得10
15秒前
Utingg发布了新的文献求助10
16秒前
茉莉发布了新的文献求助10
16秒前
吕俊杰完成签到,获得积分10
16秒前
LongY完成签到,获得积分10
16秒前
16秒前
17秒前
Allen发布了新的文献求助10
17秒前
18秒前
wen完成签到,获得积分10
18秒前
18秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588375
求助须知:如何正确求助?哪些是违规求助? 4671508
关于积分的说明 14787418
捐赠科研通 4625221
什么是DOI,文献DOI怎么找? 2531826
邀请新用户注册赠送积分活动 1500389
关于科研通互助平台的介绍 1468314