Deep Eutectic Solvents: Sustainable Media for Nanoscale and Functional Materials

离子液体 超分子化学 共晶体系 氢键 材料科学 纳米材料 纳米技术 化学工程 化学 有机化学 分子 合金 催化作用 工程类
作者
Durgesh V. Wagle,Hua Zhao,Gary A. Baker
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:47 (8): 2299-2308 被引量:779
标识
DOI:10.1021/ar5000488
摘要

ConspectusDeep eutectic solvents (DESs) represent an alternative class of ionic fluids closely resembling room-temperature ionic liquids (RTILs), although, strictly speaking, they are distinguished by the fact that they also contain an organic molecular component (typically, a hydrogen bond donor like a urea, amide, acid, or polyol), frequently as the predominant constituent. Practically speaking, DESs are attractive alternatives to RTILs, sharing most of their remarkable qualities (e.g., tolerance to humidity, negligible vapor pressure, thermostability, wide electrochemical potential windows, tunability) while overcoming several limitations associated with their RTIL cousins. Particularly, DESs are typically, less expensive, more synthetically accessible (typically, from bulk commodity chemicals using solvent/waste-free processes), nontoxic, and biodegradable.In this Account, we provide an overview of DESs as designer solvents to create well-defined nanomaterials including shape-controlled nanoparticles, electrodeposited films, metal–organic frameworks, colloidal assemblies, hierarchically porous carbons, and DNA/RNA architectures. These breakthroughs illustrate how DESs can fulfill multiple roles in directing chemistry at the nanoscale: acting as supramolecular template, metal/carbon source, sacrificial agent (e.g., ammonia release from urea), and/or redox agent, all in the absence of formal stabilizing ligand (here, solvent and stabilizer are one and the same).The ability to tailor the physicochemical properties of DESs is central to controlling their interfacial behavior. The preorganized "supramolecular" nature of DESs provides a soft template to guide the formation of bimodal porous carbon networks or the evolution of electrodeposits. A number of essential parameters (viscosity, polarity, surface tension, hydrogen bonding), plus coordination with solutes/surfaces, all play significant roles in modulating species reactivity and mass transport properties governing the genesis of nanostructure. Furthermore, DES components may modulate nucleation and growth mechanisms by charge neutralization, modification of reduction potentials (or chemical activities), and passivation of particular crystal faces, dictating growth along preferred crystallographic directions. Broad operational windows for electrochemical reactions coupled with their inherent ionic nature facilitate the electrodeposition of alloys and semiconductors inaccessible to classical means and the use of cosolvents or applied potential control provide under-explored strategies for mediating interfacial interactions leading to control over film characteristics.The biocompatibility of DESs suggests intriguing potential for the construction of biomolecular architectures in these novel media. It has been demonstrated that nucleic acid structures can be manipulated in the ionic, crowded, dehydrating (low water activity) DES environment—including the adoption of duplex helical structures divergent from the canonical B form and parallel G-quadruplex DNA persisting near water's boiling point—challenging the misconception that water is a necessity for maintenance of nucleic acid structure/functionality and suggesting an enticing trajectory toward DNA/RNA-based nanocatalysis within a strictly anhydrous medium.DESs offer tremendous opportunities and open intriguing perspectives for generating sophisticated nanostructures within an anhydrous or low-water medium. We conclude this Account by offering our thoughts on the evolution of the field, pointing to areas of clear and compelling utility which will surely see fruition in the coming years. Finally, we highlight a few hurdles (e.g., need for a universal nomenclature, absence of water-immiscible, oriented-phase, and low-viscosity DESs) which, once navigated, will hasten progress in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷艳的璎应助肖飞鱼采纳,获得10
1秒前
JamesPei应助肖飞鱼采纳,获得10
1秒前
meng完成签到,获得积分10
1秒前
cc完成签到,获得积分10
1秒前
SYQ发布了新的文献求助10
1秒前
Chen完成签到,获得积分10
1秒前
1秒前
Profeto应助sharks采纳,获得10
2秒前
达到完成签到,获得积分20
3秒前
想把太阳揣兜里完成签到,获得积分10
3秒前
坚定的草丛完成签到,获得积分10
4秒前
red完成签到,获得积分10
4秒前
中平完成签到 ,获得积分10
4秒前
林祥胜完成签到 ,获得积分10
5秒前
心灵的守望完成签到,获得积分10
5秒前
Zsir完成签到,获得积分10
6秒前
SYLH应助wpeng326采纳,获得10
6秒前
zhangjianzeng发布了新的文献求助10
6秒前
hoshi完成签到 ,获得积分10
7秒前
从容的雨灵完成签到,获得积分10
8秒前
musejie完成签到,获得积分10
8秒前
ENG完成签到,获得积分10
8秒前
单身的青柏完成签到 ,获得积分10
8秒前
无私的芹应助诺奇采纳,获得10
8秒前
酷炫橘子完成签到,获得积分10
8秒前
情怀应助Tang采纳,获得10
9秒前
duan完成签到 ,获得积分10
9秒前
111完成签到,获得积分10
10秒前
上官若男应助JUNE采纳,获得30
10秒前
甜晞完成签到,获得积分10
10秒前
gnr2000发布了新的文献求助30
10秒前
小李完成签到,获得积分10
11秒前
sharks完成签到,获得积分10
11秒前
好想被风刮走完成签到,获得积分10
12秒前
11号迪西馅饼完成签到,获得积分10
12秒前
虚心三问发布了新的文献求助10
12秒前
wpeng326完成签到,获得积分20
13秒前
辛勤的寄瑶完成签到 ,获得积分10
13秒前
Swu完成签到,获得积分10
13秒前
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015762
求助须知:如何正确求助?哪些是违规求助? 3555701
关于积分的说明 11318515
捐赠科研通 3288899
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027