Deep Eutectic Solvents: Sustainable Media for Nanoscale and Functional Materials

离子液体 超分子化学 共晶体系 氢键 材料科学 纳米材料 纳米技术 化学工程 化学 有机化学 分子 合金 催化作用 工程类
作者
Durgesh V. Wagle,Hua Zhao,Gary A. Baker
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:47 (8): 2299-2308 被引量:779
标识
DOI:10.1021/ar5000488
摘要

ConspectusDeep eutectic solvents (DESs) represent an alternative class of ionic fluids closely resembling room-temperature ionic liquids (RTILs), although, strictly speaking, they are distinguished by the fact that they also contain an organic molecular component (typically, a hydrogen bond donor like a urea, amide, acid, or polyol), frequently as the predominant constituent. Practically speaking, DESs are attractive alternatives to RTILs, sharing most of their remarkable qualities (e.g., tolerance to humidity, negligible vapor pressure, thermostability, wide electrochemical potential windows, tunability) while overcoming several limitations associated with their RTIL cousins. Particularly, DESs are typically, less expensive, more synthetically accessible (typically, from bulk commodity chemicals using solvent/waste-free processes), nontoxic, and biodegradable.In this Account, we provide an overview of DESs as designer solvents to create well-defined nanomaterials including shape-controlled nanoparticles, electrodeposited films, metal–organic frameworks, colloidal assemblies, hierarchically porous carbons, and DNA/RNA architectures. These breakthroughs illustrate how DESs can fulfill multiple roles in directing chemistry at the nanoscale: acting as supramolecular template, metal/carbon source, sacrificial agent (e.g., ammonia release from urea), and/or redox agent, all in the absence of formal stabilizing ligand (here, solvent and stabilizer are one and the same).The ability to tailor the physicochemical properties of DESs is central to controlling their interfacial behavior. The preorganized "supramolecular" nature of DESs provides a soft template to guide the formation of bimodal porous carbon networks or the evolution of electrodeposits. A number of essential parameters (viscosity, polarity, surface tension, hydrogen bonding), plus coordination with solutes/surfaces, all play significant roles in modulating species reactivity and mass transport properties governing the genesis of nanostructure. Furthermore, DES components may modulate nucleation and growth mechanisms by charge neutralization, modification of reduction potentials (or chemical activities), and passivation of particular crystal faces, dictating growth along preferred crystallographic directions. Broad operational windows for electrochemical reactions coupled with their inherent ionic nature facilitate the electrodeposition of alloys and semiconductors inaccessible to classical means and the use of cosolvents or applied potential control provide under-explored strategies for mediating interfacial interactions leading to control over film characteristics.The biocompatibility of DESs suggests intriguing potential for the construction of biomolecular architectures in these novel media. It has been demonstrated that nucleic acid structures can be manipulated in the ionic, crowded, dehydrating (low water activity) DES environment—including the adoption of duplex helical structures divergent from the canonical B form and parallel G-quadruplex DNA persisting near water's boiling point—challenging the misconception that water is a necessity for maintenance of nucleic acid structure/functionality and suggesting an enticing trajectory toward DNA/RNA-based nanocatalysis within a strictly anhydrous medium.DESs offer tremendous opportunities and open intriguing perspectives for generating sophisticated nanostructures within an anhydrous or low-water medium. We conclude this Account by offering our thoughts on the evolution of the field, pointing to areas of clear and compelling utility which will surely see fruition in the coming years. Finally, we highlight a few hurdles (e.g., need for a universal nomenclature, absence of water-immiscible, oriented-phase, and low-viscosity DESs) which, once navigated, will hasten progress in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
请叫我风吹麦浪应助C2采纳,获得10
刚刚
xlj发布了新的文献求助10
刚刚
刚刚
迷路白桃完成签到,获得积分10
1秒前
kento发布了新的文献求助30
1秒前
眯眯眼的衬衫应助yKkkkkk采纳,获得10
1秒前
小豆包科研冲刺者完成签到,获得积分10
1秒前
黄饱饱完成签到,获得积分10
2秒前
2秒前
传奇3应助CO2采纳,获得10
3秒前
4秒前
称心乐枫完成签到,获得积分10
5秒前
5秒前
22发布了新的文献求助10
5秒前
berry发布了新的文献求助10
5秒前
kingmin应助毛慢慢采纳,获得10
6秒前
完美世界应助顺利鱼采纳,获得10
7秒前
搜集达人应助招财不肥采纳,获得10
8秒前
sweetbearm应助李秋静采纳,获得10
8秒前
Michael_li完成签到,获得积分10
8秒前
whs完成签到,获得积分10
10秒前
科研通AI5应助xlj采纳,获得10
11秒前
再干一杯发布了新的文献求助10
11秒前
12秒前
满意的天完成签到 ,获得积分10
12秒前
luoshiwen完成签到,获得积分10
12秒前
落寞的觅柔完成签到,获得积分10
14秒前
15秒前
LUNWENREQUEST发布了新的文献求助10
15秒前
16秒前
17秒前
123cxj完成签到,获得积分10
20秒前
CO2发布了新的文献求助10
20秒前
summer发布了新的文献求助10
20秒前
21秒前
Xx.发布了新的文献求助10
21秒前
大大关注了科研通微信公众号
21秒前
稚祎完成签到 ,获得积分10
21秒前
21秒前
CodeCraft应助东东采纳,获得10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808