Deep Eutectic Solvents: Sustainable Media for Nanoscale and Functional Materials

离子液体 超分子化学 共晶体系 氢键 材料科学 纳米材料 纳米技术 化学工程 化学 有机化学 分子 合金 催化作用 工程类
作者
Durgesh V. Wagle,Hua Zhao,Gary A. Baker
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:47 (8): 2299-2308 被引量:717
标识
DOI:10.1021/ar5000488
摘要

ConspectusDeep eutectic solvents (DESs) represent an alternative class of ionic fluids closely resembling room-temperature ionic liquids (RTILs), although, strictly speaking, they are distinguished by the fact that they also contain an organic molecular component (typically, a hydrogen bond donor like a urea, amide, acid, or polyol), frequently as the predominant constituent. Practically speaking, DESs are attractive alternatives to RTILs, sharing most of their remarkable qualities (e.g., tolerance to humidity, negligible vapor pressure, thermostability, wide electrochemical potential windows, tunability) while overcoming several limitations associated with their RTIL cousins. Particularly, DESs are typically, less expensive, more synthetically accessible (typically, from bulk commodity chemicals using solvent/waste-free processes), nontoxic, and biodegradable.In this Account, we provide an overview of DESs as designer solvents to create well-defined nanomaterials including shape-controlled nanoparticles, electrodeposited films, metal–organic frameworks, colloidal assemblies, hierarchically porous carbons, and DNA/RNA architectures. These breakthroughs illustrate how DESs can fulfill multiple roles in directing chemistry at the nanoscale: acting as supramolecular template, metal/carbon source, sacrificial agent (e.g., ammonia release from urea), and/or redox agent, all in the absence of formal stabilizing ligand (here, solvent and stabilizer are one and the same).The ability to tailor the physicochemical properties of DESs is central to controlling their interfacial behavior. The preorganized “supramolecular” nature of DESs provides a soft template to guide the formation of bimodal porous carbon networks or the evolution of electrodeposits. A number of essential parameters (viscosity, polarity, surface tension, hydrogen bonding), plus coordination with solutes/surfaces, all play significant roles in modulating species reactivity and mass transport properties governing the genesis of nanostructure. Furthermore, DES components may modulate nucleation and growth mechanisms by charge neutralization, modification of reduction potentials (or chemical activities), and passivation of particular crystal faces, dictating growth along preferred crystallographic directions. Broad operational windows for electrochemical reactions coupled with their inherent ionic nature facilitate the electrodeposition of alloys and semiconductors inaccessible to classical means and the use of cosolvents or applied potential control provide under-explored strategies for mediating interfacial interactions leading to control over film characteristics.The biocompatibility of DESs suggests intriguing potential for the construction of biomolecular architectures in these novel media. It has been demonstrated that nucleic acid structures can be manipulated in the ionic, crowded, dehydrating (low water activity) DES environment—including the adoption of duplex helical structures divergent from the canonical B form and parallel G-quadruplex DNA persisting near water’s boiling point—challenging the misconception that water is a necessity for maintenance of nucleic acid structure/functionality and suggesting an enticing trajectory toward DNA/RNA-based nanocatalysis within a strictly anhydrous medium.DESs offer tremendous opportunities and open intriguing perspectives for generating sophisticated nanostructures within an anhydrous or low-water medium. We conclude this Account by offering our thoughts on the evolution of the field, pointing to areas of clear and compelling utility which will surely see fruition in the coming years. Finally, we highlight a few hurdles (e.g., need for a universal nomenclature, absence of water-immiscible, oriented-phase, and low-viscosity DESs) which, once navigated, will hasten progress in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不安一鸣完成签到,获得积分10
刚刚
雪山飞龙发布了新的文献求助10
2秒前
3秒前
852应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
starofjlu应助科研通管家采纳,获得20
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
妮妮完成签到,获得积分10
3秒前
4秒前
美好寒梦关注了科研通微信公众号
5秒前
7秒前
8秒前
周茉完成签到,获得积分20
9秒前
铉莉发布了新的文献求助10
10秒前
11秒前
yuki完成签到 ,获得积分10
12秒前
lzf发布了新的文献求助10
14秒前
15秒前
James发布了新的文献求助10
16秒前
铉莉完成签到,获得积分20
17秒前
wyw发布了新的文献求助10
18秒前
qwe完成签到,获得积分10
19秒前
科研通AI2S应助浪漫得要死采纳,获得10
20秒前
张丁发布了新的文献求助10
21秒前
22秒前
22秒前
23秒前
zmayq完成签到,获得积分10
23秒前
sfef完成签到,获得积分10
24秒前
张丁完成签到,获得积分10
27秒前
sunny完成签到 ,获得积分10
27秒前
1234完成签到 ,获得积分10
27秒前
粗暴的从蓉完成签到,获得积分20
27秒前
29秒前
摆不烂发布了新的文献求助10
29秒前
Burnell发布了新的文献求助10
30秒前
31秒前
科研通AI2S应助sfxnxgu采纳,获得10
32秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159845
求助须知:如何正确求助?哪些是违规求助? 2810777
关于积分的说明 7889428
捐赠科研通 2469877
什么是DOI,文献DOI怎么找? 1315131
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012