余维数
数学
分叉
极限(数学)
极限环
参数空间
简并能级
博格达诺夫-塔肯分岔
鞍结分岔
马鞍
分岔理论
奇点
数学分析
无限周期分岔
跨临界分岔
应用数学
物理
几何学
非线性系统
数学优化
量子力学
作者
Dongmei Xiao,Kate Fang Zhang
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2007-01-01
卷期号:8 (2): 417-433
被引量:22
标识
DOI:10.3934/dcdsb.2007.8.417
摘要
The bifurcation analysis of a generalized predator-prey model depending on all parameters is carried out in this paper. The model, which was first proposed by Hanski et al. [6], has a degenerate saddle of codimension 2 for some parameter values, and a Bogdanov-Takens singularity (focus case) of codimension 3 for some other parameter values. By using normal form theory, we also show that saddle bifurcation of codimension 2 and Bogdanov-Takens bifurcation of codimension 3 (focus case) occur as the parameter values change in a small neighborhood of the appropriate parameter values, respectively. Moreover, we provide some numerical simulations using XPPAUT to show that the model has two limit cycles for some parameter values, has one limit cycle which contains three positive equilibria inside for some other parameter values, and has three positive equilibria but no limit cycles for other parameter values.
科研通智能强力驱动
Strongly Powered by AbleSci AI