Integrating multi-fidelity blood flow data with reduced-order data assimilation

数据同化 计算机科学 计算流体力学 卡尔曼滤波器 血流 动态模态分解 不确定度量化 人工智能 算法 模拟 机器学习 物理 机械 医学 内科学 气象学
作者
Milad Habibi,Roshan M. D’Souza,Scott T. M. Dawson,Amirhossein Arzani
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:135: 104566-104566 被引量:27
标识
DOI:10.1016/j.compbiomed.2021.104566
摘要

High-fidelity patient-specific modeling of cardiovascular flows and hemodynamics is challenging. Direct blood flow measurement inside the body with in-vivo measurement modalities such as 4D flow magnetic resonance imaging (4D flow MRI) suffer from low resolution and acquisition noise. In-vitro experimental modeling and patient-specific computational fluid dynamics (CFD) models are subject to uncertainty in patient-specific boundary conditions and model parameters. Furthermore, collecting blood flow data in the near-wall region (e.g., wall shear stress) with experimental measurement modalities poses additional challenges. In this study, a computationally efficient data assimilation method called reduced-order modeling Kalman filter (ROM-KF) was proposed, which combined a sequential Kalman filter with reduced-order modeling using a linear model provided by dynamic mode decomposition (DMD). The goal of ROM-KF was to overcome low resolution and noise in experimental and uncertainty in CFD modeling of cardiovascular flows. The accuracy of the method was assessed with 1D Womersley flow, 2D idealized aneurysm, and 3D patient-specific cerebral aneurysm models. Synthetic experimental data were used to enable direct quantification of errors using benchmark datasets. The accuracy of ROM-KF in reconstructing near-wall hemodynamics was assessed by applying the method to problems where near-wall blood flow data were missing in the experimental dataset. The ROM-KF method provided blood flow data that were more accurate than the computational and synthetic experimental datasets and improved near-wall hemodynamics quantification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助曼尼采纳,获得10
1秒前
飞羽发布了新的文献求助10
1秒前
科研通AI2S应助song99采纳,获得10
1秒前
momi完成签到 ,获得积分10
1秒前
哈哈哈呢完成签到 ,获得积分20
1秒前
LiShin发布了新的文献求助10
1秒前
phylicia发布了新的文献求助10
2秒前
萝卜完成签到,获得积分10
2秒前
2秒前
sjj完成签到,获得积分10
3秒前
只道寻常发布了新的文献求助10
3秒前
灵巧坤完成签到,获得积分20
4秒前
澹台灭明完成签到,获得积分10
4秒前
含蓄的鹤发布了新的文献求助10
4秒前
K. G.完成签到,获得积分0
4秒前
张云雷的大闸蟹完成签到,获得积分20
4秒前
4秒前
5秒前
6秒前
化学狗完成签到,获得积分10
6秒前
yud完成签到 ,获得积分10
6秒前
7秒前
拼搏思卉发布了新的文献求助10
7秒前
8秒前
雨碎寒江完成签到,获得积分10
8秒前
9秒前
会飞的木头完成签到,获得积分10
9秒前
雪白涵山发布了新的文献求助20
9秒前
shouyu29应助MADKAI采纳,获得10
9秒前
Seiswan发布了新的文献求助10
9秒前
小小菜鸟完成签到,获得积分10
10秒前
10秒前
西西弗斯完成签到,获得积分10
10秒前
KT2440完成签到,获得积分10
11秒前
顾阿秀发布了新的文献求助10
11秒前
11秒前
11秒前
gnr2000完成签到,获得积分0
11秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762