Integrating multi-fidelity blood flow data with reduced-order data assimilation

数据同化 计算机科学 计算流体力学 卡尔曼滤波器 血流 动态模态分解 不确定度量化 人工智能 算法 模拟 机器学习 物理 机械 医学 气象学 内科学
作者
Milad Habibi,Roshan M. D’Souza,Scott T. M. Dawson,Amirhossein Arzani
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:135: 104566-104566 被引量:27
标识
DOI:10.1016/j.compbiomed.2021.104566
摘要

High-fidelity patient-specific modeling of cardiovascular flows and hemodynamics is challenging. Direct blood flow measurement inside the body with in-vivo measurement modalities such as 4D flow magnetic resonance imaging (4D flow MRI) suffer from low resolution and acquisition noise. In-vitro experimental modeling and patient-specific computational fluid dynamics (CFD) models are subject to uncertainty in patient-specific boundary conditions and model parameters. Furthermore, collecting blood flow data in the near-wall region (e.g., wall shear stress) with experimental measurement modalities poses additional challenges. In this study, a computationally efficient data assimilation method called reduced-order modeling Kalman filter (ROM-KF) was proposed, which combined a sequential Kalman filter with reduced-order modeling using a linear model provided by dynamic mode decomposition (DMD). The goal of ROM-KF was to overcome low resolution and noise in experimental and uncertainty in CFD modeling of cardiovascular flows. The accuracy of the method was assessed with 1D Womersley flow, 2D idealized aneurysm, and 3D patient-specific cerebral aneurysm models. Synthetic experimental data were used to enable direct quantification of errors using benchmark datasets. The accuracy of ROM-KF in reconstructing near-wall hemodynamics was assessed by applying the method to problems where near-wall blood flow data were missing in the experimental dataset. The ROM-KF method provided blood flow data that were more accurate than the computational and synthetic experimental datasets and improved near-wall hemodynamics quantification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助zhangzhang采纳,获得10
4秒前
风起完成签到 ,获得积分10
4秒前
6秒前
7秒前
海边听海完成签到 ,获得积分10
8秒前
525完成签到,获得积分10
9秒前
科研通AI2S应助cg采纳,获得10
9秒前
10秒前
12秒前
研友_Z7mYwL完成签到,获得积分10
14秒前
彭于晏应助Murphy采纳,获得10
15秒前
坦率的亦绿完成签到 ,获得积分10
15秒前
终生学习老张头完成签到,获得积分10
21秒前
tina3058完成签到,获得积分10
21秒前
27秒前
31秒前
wali完成签到 ,获得积分0
31秒前
33秒前
Rny_x完成签到,获得积分10
34秒前
勇敢的妞妞完成签到,获得积分10
37秒前
Michaelialzm发布了新的文献求助10
38秒前
伊丽莎白完成签到,获得积分10
39秒前
小唐完成签到,获得积分20
39秒前
小肥鑫发布了新的文献求助30
40秒前
40秒前
MY完成签到,获得积分10
41秒前
微笑芒果完成签到 ,获得积分10
41秒前
43秒前
Murphy发布了新的文献求助10
43秒前
打打应助正直虔采纳,获得30
43秒前
44秒前
金轩完成签到 ,获得积分10
44秒前
???发布了新的文献求助150
45秒前
辛夷完成签到,获得积分10
47秒前
47秒前
psycho发布了新的文献求助10
49秒前
我有柳叶刀完成签到,获得积分10
54秒前
刘科江发布了新的文献求助10
55秒前
59秒前
萧水白应助魏惜珊采纳,获得10
1分钟前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3211706
求助须知:如何正确求助?哪些是违规求助? 2860559
关于积分的说明 8125014
捐赠科研通 2526473
什么是DOI,文献DOI怎么找? 1360252
科研通“疑难数据库(出版商)”最低求助积分说明 643168
邀请新用户注册赠送积分活动 615245