Regulation of Morphology and Electronic Structure of FeCoNi Layered Double Hydroxides for Highly Active and Stable Water Oxidization Catalysts

纳米笼 材料科学 析氧 氢氧化物 催化作用 层状双氢氧化物 分解水 化学工程 密度泛函理论 吉布斯自由能 金属 纳米技术 电极 冶金 光催化 热力学 电化学 化学 物理化学 物理 工程类 计算化学 生物化学
作者
Xiao Zhang,Feng Yan,Xinzhi Ma,Chunling Zhu,Yue Wang,Ying Xie,Shulei Chou,Youju Huang,Yujin Chen
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:11 (48) 被引量:162
标识
DOI:10.1002/aenm.202102141
摘要

Abstract Highly efficient electrocatalysts for the oxygen evolution reaction (OER) are very important for various energy storage and conversion systems such as water splitting devices and metal‐air batteries. However, developing OER electrocatalysts with high activity and excellent stability at a high current density remains a considerable challenge. Herein, a facile room‐temperature‐stirring strategy is described to obtain FeCoNi layered double hydroxide nanocages (FeCoNi‐LDHs) using a metal–organic framework as a precursor. The FeCoNi‐LDHs have hollow features, while their walls are assembled with ultrathin layered hydroxide nanosheets. By designing a unique structure and tuning the composition, high activity and robust long‐term stability of the FeCoNi‐LDHs for the OER outperform IrO 2 , used as the reference catalyst. The as‐obtained high electrochemically active surface area and the decreased transfer resistance are ascribed to the significantly improved activity. Density functional theory calculations suggest that the introduction of Fe can fine‐tune the electronic structure and decrease the Gibbs free energy difference of the rate‐determining step (ΔG 3 ), improving the intrinsic activity of FeCoNi‐LDHs toward the OER. Furthermore, the proposed room‐temperature‐stirring strategy can be easily scaled up to more than 10 grams of nanocages through a single batch reaction process, demonstrating the large‐scale applicability of the catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
精明人达发布了新的文献求助10
1秒前
eraygt完成签到,获得积分10
1秒前
蓝白胖次哇完成签到,获得积分20
2秒前
QQ完成签到,获得积分10
2秒前
ccqqww完成签到,获得积分10
2秒前
3秒前
bzlish发布了新的文献求助10
3秒前
3秒前
hui完成签到,获得积分10
3秒前
4秒前
老马发布了新的文献求助30
4秒前
快乐花卷完成签到,获得积分10
5秒前
5秒前
Allen发布了新的文献求助10
5秒前
adu完成签到,获得积分10
5秒前
ccqqww发布了新的文献求助10
5秒前
科研通AI6应助精明人达采纳,获得10
5秒前
崔雪峰发布了新的文献求助10
6秒前
6秒前
乐乐应助传统的如霜采纳,获得10
6秒前
乐乐应助bzlish采纳,获得10
8秒前
8秒前
pth完成签到,获得积分10
8秒前
爆米花应助Chen采纳,获得10
9秒前
诚心雪晴发布了新的文献求助10
9秒前
张馨月发布了新的文献求助10
9秒前
Awake发布了新的文献求助10
10秒前
面壁思过发布了新的文献求助10
10秒前
MM完成签到,获得积分10
10秒前
SciGPT应助jassica9采纳,获得10
11秒前
12秒前
张晓林完成签到,获得积分20
13秒前
科研通AI6应助Olivia采纳,获得10
14秒前
在水一方应助v小飞侠101采纳,获得10
14秒前
16秒前
屎上雕花选手完成签到,获得积分10
17秒前
wryyyy完成签到,获得积分10
17秒前
虚幻代芙完成签到,获得积分20
18秒前
19秒前
zdz发布了新的文献求助60
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642582
求助须知:如何正确求助?哪些是违规求助? 4759250
关于积分的说明 15018176
捐赠科研通 4801148
什么是DOI,文献DOI怎么找? 2566437
邀请新用户注册赠送积分活动 1524505
关于科研通互助平台的介绍 1484039