Deep learning-based intravascular ultrasound segmentation for the assessment of coronary artery disease

血管内超声 医学 管腔(解剖学) 分割 支架 冠状动脉疾病 放射科 人工智能 冠状动脉 动脉 计算机科学 心脏病学 内科学
作者
Takeshi Nishi,Rikiya Yamashita,Shinji Imura,Kazuya Tateishi,Hideki Kitahara,Yoshio Kobayashi,Paul G. Yock,Peter J. Fitzgerald,Yasuhiro Honda
出处
期刊:International Journal of Cardiology [Elsevier BV]
卷期号:333: 55-59 被引量:31
标识
DOI:10.1016/j.ijcard.2021.03.020
摘要

Accurate segmentation of the coronary arteries with intravascular ultrasound (IVUS) is important to optimize coronary stent implantation. Recently, deep learning (DL) methods have been proposed to develop automatic IVUS segmentation. However, most of those have been limited to segmenting the lumen and vessel (i.e. lumen-intima and media-adventitia borders), not applied to segmenting stent dimension. Hence, this study aimed to develop a DL method for automatic IVUS segmentation of stent area in addition to lumen and vessel area.This study included a total of 45,449 images from 1576 IVUS pullback runs. The datasets were randomly split into training, validation, and test datasets (0.7:0.15:0.15). After developing the DL-based system to segment IVUS images using the training and validation datasets, we evaluated the performance through the independent test dataset.The DL-based segmentation correlated well with the expert-analyzed segmentation with a mean intersection over union (± standard deviation) of 0.80 ± 0.20, correlation coefficient of 0.98 (95% confidence intervals: 0.98 to 0.98), 0.96 (0.95 to 0.96), and 0.96 (0.96 to 0.96) for lumen, vessel, and stent area, and the mean difference (± standard deviation) of 0.02 ± 0.57, -0.44 ± 1.56 and - 0.17 ± 0.74 mm2 for lumen, vessel and stent area, respectively.This automated DL-based IVUS segmentation of lumen, vessel and stent area showed an excellent agreement with manual segmentation by experts, supporting the feasibility of artificial intelligence-assisted IVUS assessment in patients undergoing coronary stent implantation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Archer发布了新的文献求助10
刚刚
wangs发布了新的文献求助10
刚刚
1秒前
if发布了新的文献求助10
1秒前
小王同学完成签到,获得积分20
1秒前
慕月发布了新的文献求助10
1秒前
2秒前
Zer0发布了新的文献求助10
2秒前
akai完成签到,获得积分10
2秒前
Owen应助October采纳,获得10
2秒前
2秒前
脑洞疼应助周杰采纳,获得10
3秒前
3秒前
SciGPT应助凯伢采纳,获得10
3秒前
北落发布了新的文献求助10
4秒前
5秒前
勤奋起来完成签到 ,获得积分10
5秒前
无花果应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得10
6秒前
Singularity应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
6秒前
无花果应助科研通管家采纳,获得10
6秒前
yar应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
Sid应助科研通管家采纳,获得50
7秒前
mmt发布了新的文献求助10
7秒前
DijiaXu应助科研通管家采纳,获得10
7秒前
慕青应助pphss采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
在水一方应助Crystal采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
8秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978526
求助须知:如何正确求助?哪些是违规求助? 3522634
关于积分的说明 11214133
捐赠科研通 3260065
什么是DOI,文献DOI怎么找? 1799744
邀请新用户注册赠送积分活动 878642
科研通“疑难数据库(出版商)”最低求助积分说明 807002