ResNet based on feature-inspired gating strategy

计算机科学 人工智能 模式识别(心理学) 残余物 卷积神经网络 领域(数学) 保险丝(电气) 门控 残差神经网络 特征(语言学) 算法 数学 哲学 工程类 电气工程 生物 生理学 纯数学 语言学
作者
Jun Miao,Shaowu Xu,Baixian Zou,Yuanhua Qiao
出处
期刊:Multimedia Tools and Applications [Springer Nature]
卷期号:81 (14): 19283-19300 被引量:8
标识
DOI:10.1007/s11042-021-10802-6
摘要

CNN(Convolutional Neural Networks) is a hot topic in the field of pattern recognition., especially in the field of image recognition. And ResNet(Residual Networks) is a special kind of CNN. Compared with the general CNN structure, ResNet introduces the residual unit with an identity mapping. Identity mapping allows the deep layers to directly learn the data received by the shallow layers, which reduces the difficulty of network convergence to a certain extent. As a result, ResNet has a better learning ability, has achieved good performance in various types of image recognition work. The essence of the residual network is to fuse two types of features from different receptive fields, using the fused features instead of the output features of the previous layer as the learning object. But the implementation of feature fusion in original ResNet is adding the two features with equal weights. And this method ignores the fact that the contribution of features from different levels to the learning of the network may not be the same. In this paper, we introduce a feature-inspired gating strategy in the residual unit of ResNet, which allows the network giving different weights to different features, so that the implementation of the feature fusion can be transformed from adding features with equal weights into weighted summation with different weights. And through experiments, we proved that ResNet with gating strategy proposed in this paper can obtain higher recognition accuracy than original ResNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
叶叶应助Wenjian7761采纳,获得10
2秒前
婷123完成签到 ,获得积分10
2秒前
CipherSage应助儒雅的夏山采纳,获得10
3秒前
叙余完成签到 ,获得积分10
6秒前
8秒前
情怀应助甜美镜子采纳,获得10
8秒前
10秒前
KinoFreeze完成签到 ,获得积分10
11秒前
12秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
北城完成签到,获得积分10
14秒前
CUI发布了新的文献求助10
15秒前
cndxh发布了新的文献求助10
15秒前
17秒前
搜集达人应助Rosechanel采纳,获得10
17秒前
领导范儿应助DyG采纳,获得10
17秒前
18秒前
丫丫发布了新的文献求助10
18秒前
19秒前
20秒前
sahula完成签到,获得积分10
20秒前
李嘉睿完成签到,获得积分10
20秒前
毛毛完成签到 ,获得积分10
21秒前
俏皮短靴发布了新的文献求助10
22秒前
慕青应助凄凉山谷的风采纳,获得10
24秒前
科研通AI6应助冰冻西红柿采纳,获得10
24秒前
顾矜应助李嘉睿采纳,获得10
24秒前
赘婿应助风清扬采纳,获得10
24秒前
儒雅的夏山完成签到,获得积分10
25秒前
Joy完成签到,获得积分10
25秒前
今后应助陶醉的念之采纳,获得10
25秒前
Orange应助Tao2023采纳,获得10
25秒前
26秒前
26秒前
华仔应助cndxh采纳,获得10
26秒前
十五完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627241
求助须知:如何正确求助?哪些是违规求助? 4713226
关于积分的说明 14961499
捐赠科研通 4784040
什么是DOI,文献DOI怎么找? 2554754
邀请新用户注册赠送积分活动 1516304
关于科研通互助平台的介绍 1476655