ResNet based on feature-inspired gating strategy

计算机科学 人工智能 模式识别(心理学) 残余物 卷积神经网络 领域(数学) 保险丝(电气) 门控 残差神经网络 特征(语言学) 算法 数学 哲学 工程类 电气工程 生物 生理学 纯数学 语言学
作者
Jun Miao,Shaowu Xu,Baixian Zou,Yuanhua Qiao
出处
期刊:Multimedia Tools and Applications [Springer Nature]
卷期号:81 (14): 19283-19300 被引量:8
标识
DOI:10.1007/s11042-021-10802-6
摘要

CNN(Convolutional Neural Networks) is a hot topic in the field of pattern recognition., especially in the field of image recognition. And ResNet(Residual Networks) is a special kind of CNN. Compared with the general CNN structure, ResNet introduces the residual unit with an identity mapping. Identity mapping allows the deep layers to directly learn the data received by the shallow layers, which reduces the difficulty of network convergence to a certain extent. As a result, ResNet has a better learning ability, has achieved good performance in various types of image recognition work. The essence of the residual network is to fuse two types of features from different receptive fields, using the fused features instead of the output features of the previous layer as the learning object. But the implementation of feature fusion in original ResNet is adding the two features with equal weights. And this method ignores the fact that the contribution of features from different levels to the learning of the network may not be the same. In this paper, we introduce a feature-inspired gating strategy in the residual unit of ResNet, which allows the network giving different weights to different features, so that the implementation of the feature fusion can be transformed from adding features with equal weights into weighted summation with different weights. And through experiments, we proved that ResNet with gating strategy proposed in this paper can obtain higher recognition accuracy than original ResNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LJQ完成签到,获得积分10
刚刚
科研的神发布了新的文献求助10
刚刚
刚刚
CipherSage应助hpj采纳,获得10
刚刚
L111完成签到,获得积分20
1秒前
1秒前
沉静怀绿关注了科研通微信公众号
1秒前
windmelody完成签到,获得积分10
2秒前
2秒前
王玥1266发布了新的文献求助10
3秒前
Meddy发布了新的文献求助20
3秒前
科研通AI2S应助颜凡桃采纳,获得10
3秒前
深情安青应助Grace采纳,获得10
4秒前
gyh发布了新的文献求助10
4秒前
hijuddy完成签到,获得积分20
4秒前
Qi半仙完成签到,获得积分10
4秒前
meltconstraint完成签到,获得积分10
5秒前
赵凯完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
欢喜昊焱发布了新的文献求助10
5秒前
xx发布了新的文献求助10
6秒前
Nann完成签到 ,获得积分10
7秒前
8秒前
烟花应助随想采纳,获得10
9秒前
liyuxuan完成签到,获得积分10
9秒前
十一点二十八分完成签到 ,获得积分10
9秒前
香蕉觅云应助hijuddy采纳,获得30
10秒前
无限白羊发布了新的文献求助10
10秒前
10秒前
11秒前
笨笨易绿发布了新的文献求助10
11秒前
11秒前
Navial30发布了新的文献求助10
11秒前
唐咩咩咩完成签到,获得积分10
12秒前
快乐疯样完成签到,获得积分10
13秒前
bru发布了新的文献求助10
13秒前
13秒前
13秒前
LJQ发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480228
求助须知:如何正确求助?哪些是违规求助? 4581437
关于积分的说明 14380635
捐赠科研通 4510045
什么是DOI,文献DOI怎么找? 2471647
邀请新用户注册赠送积分活动 1458035
关于科研通互助平台的介绍 1431786