ResNet based on feature-inspired gating strategy

计算机科学 人工智能 模式识别(心理学) 残余物 卷积神经网络 领域(数学) 保险丝(电气) 门控 残差神经网络 特征(语言学) 算法 数学 哲学 工程类 电气工程 生物 生理学 纯数学 语言学
作者
Jun Miao,Shaowu Xu,Baixian Zou,Yuanhua Qiao
出处
期刊:Multimedia Tools and Applications [Springer Nature]
卷期号:81 (14): 19283-19300 被引量:8
标识
DOI:10.1007/s11042-021-10802-6
摘要

CNN(Convolutional Neural Networks) is a hot topic in the field of pattern recognition., especially in the field of image recognition. And ResNet(Residual Networks) is a special kind of CNN. Compared with the general CNN structure, ResNet introduces the residual unit with an identity mapping. Identity mapping allows the deep layers to directly learn the data received by the shallow layers, which reduces the difficulty of network convergence to a certain extent. As a result, ResNet has a better learning ability, has achieved good performance in various types of image recognition work. The essence of the residual network is to fuse two types of features from different receptive fields, using the fused features instead of the output features of the previous layer as the learning object. But the implementation of feature fusion in original ResNet is adding the two features with equal weights. And this method ignores the fact that the contribution of features from different levels to the learning of the network may not be the same. In this paper, we introduce a feature-inspired gating strategy in the residual unit of ResNet, which allows the network giving different weights to different features, so that the implementation of the feature fusion can be transformed from adding features with equal weights into weighted summation with different weights. And through experiments, we proved that ResNet with gating strategy proposed in this paper can obtain higher recognition accuracy than original ResNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
SPQR发布了新的文献求助10
1秒前
2秒前
lucky完成签到,获得积分10
5秒前
athena发布了新的文献求助30
5秒前
卷纸发布了新的文献求助10
6秒前
ZMYI发布了新的文献求助10
6秒前
星辰大海应助野猪亨利28采纳,获得10
8秒前
10秒前
所所应助ttang采纳,获得10
10秒前
13秒前
小二郎应助彭医生采纳,获得10
15秒前
可爱的函函应助新小pi采纳,获得10
17秒前
谦让黑裤发布了新的文献求助10
18秒前
18秒前
19秒前
Jasper应助疯格采纳,获得10
20秒前
辣椒完成签到 ,获得积分10
21秒前
21秒前
薰硝壤应助优秀的大有采纳,获得10
22秒前
完美世界应助陈补天采纳,获得10
22秒前
22秒前
开朗又菱发布了新的文献求助10
22秒前
邓炎林完成签到 ,获得积分10
24秒前
25秒前
28秒前
等乙天发布了新的文献求助30
28秒前
28秒前
28秒前
28秒前
穿堂风发布了新的文献求助10
29秒前
29秒前
ug发布了新的文献求助10
30秒前
31秒前
31秒前
wanci应助Guoguocheng采纳,获得10
32秒前
搜集达人应助贪玩的友灵采纳,获得10
32秒前
彭医生发布了新的文献求助10
32秒前
科研通AI2S应助zxp采纳,获得10
33秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136581
求助须知:如何正确求助?哪些是违规求助? 2787645
关于积分的说明 7782406
捐赠科研通 2443643
什么是DOI,文献DOI怎么找? 1299325
科研通“疑难数据库(出版商)”最低求助积分说明 625429
版权声明 600954