ResNet based on feature-inspired gating strategy

计算机科学 人工智能 模式识别(心理学) 残余物 卷积神经网络 领域(数学) 保险丝(电气) 门控 残差神经网络 特征(语言学) 算法 数学 哲学 工程类 电气工程 生物 生理学 纯数学 语言学
作者
Jun Miao,Shaowu Xu,Baixian Zou,Yuanhua Qiao
出处
期刊:Multimedia Tools and Applications [Springer Science+Business Media]
卷期号:81 (14): 19283-19300 被引量:8
标识
DOI:10.1007/s11042-021-10802-6
摘要

CNN(Convolutional Neural Networks) is a hot topic in the field of pattern recognition., especially in the field of image recognition. And ResNet(Residual Networks) is a special kind of CNN. Compared with the general CNN structure, ResNet introduces the residual unit with an identity mapping. Identity mapping allows the deep layers to directly learn the data received by the shallow layers, which reduces the difficulty of network convergence to a certain extent. As a result, ResNet has a better learning ability, has achieved good performance in various types of image recognition work. The essence of the residual network is to fuse two types of features from different receptive fields, using the fused features instead of the output features of the previous layer as the learning object. But the implementation of feature fusion in original ResNet is adding the two features with equal weights. And this method ignores the fact that the contribution of features from different levels to the learning of the network may not be the same. In this paper, we introduce a feature-inspired gating strategy in the residual unit of ResNet, which allows the network giving different weights to different features, so that the implementation of the feature fusion can be transformed from adding features with equal weights into weighted summation with different weights. And through experiments, we proved that ResNet with gating strategy proposed in this paper can obtain higher recognition accuracy than original ResNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助徐阳采纳,获得10
刚刚
xiao礼完成签到,获得积分10
刚刚
1秒前
1秒前
cici完成签到,获得积分20
1秒前
Qionglin完成签到,获得积分20
1秒前
LI完成签到,获得积分10
2秒前
受伤的豌豆完成签到,获得积分10
2秒前
马里兰州蛙泳胡萝卜完成签到,获得积分10
2秒前
深情安青应助铭心采纳,获得10
3秒前
3秒前
Fan Windy Hu完成签到,获得积分10
4秒前
聪明的砖头应助Beton_X采纳,获得30
4秒前
慕青应助伶俐如冰采纳,获得10
5秒前
LJL发布了新的文献求助10
5秒前
LDX关闭了LDX文献求助
6秒前
欧曼f发布了新的文献求助10
6秒前
12345完成签到 ,获得积分20
6秒前
化工波比完成签到,获得积分10
7秒前
7秒前
Qionglin发布了新的文献求助10
7秒前
Oliver发布了新的文献求助10
7秒前
ttt77完成签到,获得积分10
7秒前
bkagyin应助bowang采纳,获得10
9秒前
我是老大应助Yixuan_Zou采纳,获得10
9秒前
li完成签到,获得积分10
10秒前
酷波er应助优美的海秋采纳,获得10
11秒前
852应助befevor采纳,获得10
11秒前
如意厉完成签到,获得积分10
12秒前
陈言晴发布了新的文献求助30
13秒前
Hzw发布了新的文献求助10
13秒前
华仔应助黑色的白鲸采纳,获得10
14秒前
14秒前
15秒前
FeMnCu关注了科研通微信公众号
16秒前
顾矜应助小晓小晓采纳,获得10
17秒前
17秒前
郭杰完成签到,获得积分10
17秒前
小马甲应助Jackson_Cai采纳,获得10
18秒前
19秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5238122
求助须知:如何正确求助?哪些是违规求助? 4405802
关于积分的说明 13711768
捐赠科研通 4274090
什么是DOI,文献DOI怎么找? 2345419
邀请新用户注册赠送积分活动 1342496
关于科研通互助平台的介绍 1300416