Latent Correlation Representation Learning for Brain Tumor Segmentation With Missing MRI Modalities

相关性 人工智能 分割 模式 模态(人机交互) 计算机科学 代表(政治) 典型相关 模式识别(心理学) 图像分割 医学影像学 磁共振成像 数学 放射科 医学 几何学 社会学 政治 社会科学 法学 政治学
作者
Tongxue Zhou,Stéphane Canu,Pierre Véra,Su Ruan
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 4263-4274 被引量:143
标识
DOI:10.1109/tip.2021.3070752
摘要

Magnetic Resonance Imaging (MRI) is a widely used imaging technique to assess brain tumor. Accurately segmenting brain tumor from MR images is the key to clinical diagnostics and treatment planning. In addition, multi-modal MR images can provide complementary information for accurate brain tumor segmentation. However, it's common to miss some imaging modalities in clinical practice. In this paper, we present a novel brain tumor segmentation algorithm with missing modalities. Since it exists a strong correlation between multi-modalities, a correlation model is proposed to specially represent the latent multi-source correlation. Thanks to the obtained correlation representation, the segmentation becomes more robust in the case of missing modality. First, the individual representation produced by each encoder is used to estimate the modality independent parameter. Then, the correlation model transforms all the individual representations to the latent multi-source correlation representations. Finally, the correlation representations across modalities are fused via attention mechanism into a shared representation to emphasize the most important features for segmentation. We evaluate our model on BraTS 2018 and BraTS 2019 dataset, it outperforms the current state-of-the-art methods and produces robust results when one or more modalities are missing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkkk完成签到,获得积分10
刚刚
刚刚
情怀应助干净的夏天采纳,获得10
1秒前
早睡早起完成签到,获得积分10
2秒前
2秒前
2秒前
5秒前
bofu发布了新的文献求助10
5秒前
cstp完成签到,获得积分10
6秒前
6秒前
6秒前
就爱吃土豆完成签到,获得积分0
7秒前
宇婷发布了新的文献求助10
7秒前
毛毛毛毛小毛完成签到,获得积分10
7秒前
天天快乐应助Jason采纳,获得10
8秒前
9秒前
serendipity发布了新的文献求助10
10秒前
bofu发布了新的文献求助10
12秒前
12秒前
ding应助淡淡夕阳采纳,获得10
13秒前
13秒前
13秒前
华仔应助nimonimo采纳,获得10
13秒前
13秒前
13秒前
iroko完成签到,获得积分10
14秒前
14秒前
14秒前
16秒前
宇婷完成签到,获得积分10
16秒前
Yesitong发布了新的文献求助10
17秒前
bofu发布了新的文献求助10
17秒前
后山种仙草完成签到,获得积分10
17秒前
18秒前
x菜鸡博士应助serendipity采纳,获得10
18秒前
星辰大海应助cstp采纳,获得10
19秒前
深情安青应助潇洒飞丹采纳,获得30
20秒前
yongjie发布了新的文献求助10
20秒前
调皮鱼发布了新的文献求助10
20秒前
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956295
求助须知:如何正确求助?哪些是违规求助? 3502477
关于积分的说明 11107954
捐赠科研通 3233164
什么是DOI,文献DOI怎么找? 1787196
邀请新用户注册赠送积分活动 870506
科研通“疑难数据库(出版商)”最低求助积分说明 802105