Social Media Data Analytics for Outbreak Risk Communication: Public Attention on the “New Normal” During the COVID-19 Pandemic in Indonesia

政府(语言学) 情绪分析 社会化媒体 大流行 人口 分析 公共卫生 感知 2019年冠状病毒病(COVID-19) 心理学 业务 广告 计算机科学 医学 疾病 环境卫生 数据科学 万维网 人工智能 哲学 病理 护理部 神经科学 传染病(医学专业) 语言学
作者
Annisa Ristya Rahmanti,Dina Nur Anggraini Ningrum,Lutfan Lazuardi,Hsuan-Chia Yang,Yu-Chuan Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:205: 106083-106083 被引量:19
标识
DOI:10.1016/j.cmpb.2021.106083
摘要

After two months of implementing a partial lockdown, the Indonesian government had announced the "New Normal" policy to prevent a further economic crash in the country. This policy received many critics, as Indonesia still experiencing a fluctuated number of infected cases. Understanding public perception through effective risk communication can assist the government in relaying an appropriate message to improve people's compliance and to avoid further disease spread.This study observed how risk communication using social media platforms like Twitter could be adopted to measure public attention on COVID-19 related issues "New Normal".From May 21 to June 18, 2020, we archived all tweets related to COVID-19 containing keywords: "#NewNormal", and "New Normal" using Drone Emprit Academy (DEA) engine. DEA search API collected all requested tweets and described the cumulative tweets for trend analysis, word segmentation, and word frequency. We further analyzed the public perception using sentiment analysis and identified the predominant tweets using emotion analysis.We collected 284,216 tweets from 137,057 active users. From the trend analysis, we observed three stages of the changing trend of the public's attention on the "New Normal". Results from the sentiment analysis indicate that more than half of the population (52%) had a "positive" sentiment towards the "New Normal" issues while only 41% of them had a "negative" perception. Our study also demonstrated the public's sentiment trend has gradually shifted from "negative" to "positive" due to the influence of both the government actions and the spread of the disease. A more detailed analysis of the emotion analysis showed that the majority of the public emotions (77.6%) relied on the emotion of "trust", "anticipation", and "joy". Meanwhile, people were also surprised (8.62%) that the Indonesian government progressed to the "New Normal" concept despite a fluctuating number of cases.Our findings offer an opportunity for the government to use Twitter in the process of quick decision-making and policy evaluation during uncertain times in response to the COVID-19 pandemic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
尊敬的安露完成签到,获得积分20
刚刚
彭于晏应助123采纳,获得10
1秒前
NexusExplorer应助lalala采纳,获得10
1秒前
田様应助kaola采纳,获得10
2秒前
2秒前
消潇完成签到,获得积分10
2秒前
Yuhao完成签到,获得积分10
2秒前
虞无声发布了新的文献求助10
2秒前
王一帆发布了新的文献求助10
3秒前
3秒前
柳絮吃糖发布了新的文献求助10
4秒前
易安发布了新的文献求助10
5秒前
5秒前
科研通AI2S应助小星采纳,获得10
6秒前
7秒前
小柯应助CFC12采纳,获得30
7秒前
7秒前
善学以致用应助依旧采纳,获得10
7秒前
日喝抽打发布了新的文献求助10
8秒前
周虹完成签到,获得积分10
9秒前
9秒前
天天开心发布了新的文献求助10
12秒前
lyj发布了新的文献求助10
12秒前
12秒前
13秒前
柳絮吃糖完成签到,获得积分20
13秒前
王一帆完成签到,获得积分20
14秒前
14秒前
14秒前
14秒前
15秒前
li完成签到 ,获得积分10
15秒前
15秒前
科研通AI2S应助甜蜜鞅采纳,获得30
15秒前
小柯应助Hm采纳,获得50
16秒前
萧水白应助亓大大采纳,获得10
17秒前
bkagyin应助张谦采纳,获得10
17秒前
小花生zz发布了新的文献求助10
17秒前
lzj001983完成签到,获得积分10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309390
求助须知:如何正确求助?哪些是违规求助? 2942720
关于积分的说明 8510546
捐赠科研通 2617838
什么是DOI,文献DOI怎么找? 1430566
科研通“疑难数据库(出版商)”最低求助积分说明 664171
邀请新用户注册赠送积分活动 649319