亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Albireo: Energy-Efficient Acceleration of Convolutional Neural Networks via Silicon Photonics

计算机科学 光子学 高效能源利用 多路复用 可扩展性 多播 硅光子学 能源消耗 吞吐量 计算机体系结构 电子工程 计算机网络 电信 电气工程 无线 物理 光电子学 工程类 数据库
作者
Kyle Shiflett,Avinash Kodi,Razvan Bunescu,Ahmed Louri
标识
DOI:10.1109/isca52012.2021.00072
摘要

With the end of Dennard scaling, highly-parallel and specialized hardware accelerators have been proposed to improve the throughput and energy-efficiency of deep neural network (DNN) models for various applications. However, collective data movement primitives such as multicast and broadcast that are required for multiply-and-accumulate (MAC) computation in DNN models are expensive, and require excessive energy and latency when implemented with electrical networks. This consequently limits the scalability and performance of electronic hardware accelerators. Emerging technology such as silicon photonics can inherently provide efficient implementation of multicast and broadcast operations, making photonics more amenable to exploit parallelism within DNN models. Moreover, when coupled with other unique features such as low energy consumption, high channel capacity with wavelength-division multiplexing (WDM), and high speed, silicon photonics could potentially provide a viable technology for scaling DNN acceleration.In this paper, we propose Albireo, an analog photonic architecture for scaling DNN acceleration. By characterizing photonic devices such as microring resonators (MRRs) and Mach-Zehnder modulators (MZM) using photonic simulators, we develop realistic device models and outline their capability for system level acceleration. Using the device models, we develop an efficient broadcast combined with multicast data distribution by leveraging parameter sharing through unique WDM dot product processing. We evaluate the energy and throughput performance of Albireo on DNN models such as ResNet18, MobileNet and VGG16. When compared to cur-rent state-of-the-art electronic accelerators, Albireo increases throughput by 110 X, and improves energy-delay product (EDP) by an average of 74 X with current photonic devices. Furthermore, by considering moderate and aggressive photonic scaling, the proposed Albireo design shows that EDP can be reduced by at least 229 X.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Jack80完成签到,获得积分0
34秒前
科研通AI2S应助Jack80采纳,获得10
49秒前
张大然完成签到 ,获得积分10
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
呆瓜完成签到,获得积分10
1分钟前
1分钟前
zxd发布了新的文献求助10
1分钟前
CC发布了新的文献求助10
1分钟前
1分钟前
半生完成签到 ,获得积分10
2分钟前
2分钟前
NexusExplorer应助小样采纳,获得30
3分钟前
3分钟前
3分钟前
vivid完成签到,获得积分10
3分钟前
3分钟前
黄惠完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
小样发布了新的文献求助30
4分钟前
LYT发布了新的文献求助10
4分钟前
FashionBoy应助爱吃蒸蛋采纳,获得10
4分钟前
香蕉觅云应助LYT采纳,获得10
4分钟前
4分钟前
zxd发布了新的文献求助10
4分钟前
爱吃蒸蛋发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
jyy应助科研通管家采纳,获得10
5分钟前
orixero应助RyanL采纳,获得10
5分钟前
5分钟前
LYT发布了新的文献求助10
5分钟前
6分钟前
田様应助Ophelia采纳,获得30
6分钟前
科目三应助Linyi采纳,获得10
6分钟前
6分钟前
Ophelia发布了新的文献求助30
6分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3341839
求助须知:如何正确求助?哪些是违规求助? 2969202
关于积分的说明 8637753
捐赠科研通 2648899
什么是DOI,文献DOI怎么找? 1450412
科研通“疑难数据库(出版商)”最低求助积分说明 671913
邀请新用户注册赠送积分活动 660986