计算机科学
光子学
高效能源利用
多路复用
可扩展性
多播
硅光子学
能源消耗
吞吐量
计算机体系结构
电子工程
计算机网络
电信
电气工程
无线
物理
光电子学
工程类
数据库
作者
Kyle Shiflett,Avinash Kodi,Razvan Bunescu,Ahmed Louri
标识
DOI:10.1109/isca52012.2021.00072
摘要
With the end of Dennard scaling, highly-parallel and specialized hardware accelerators have been proposed to improve the throughput and energy-efficiency of deep neural network (DNN) models for various applications. However, collective data movement primitives such as multicast and broadcast that are required for multiply-and-accumulate (MAC) computation in DNN models are expensive, and require excessive energy and latency when implemented with electrical networks. This consequently limits the scalability and performance of electronic hardware accelerators. Emerging technology such as silicon photonics can inherently provide efficient implementation of multicast and broadcast operations, making photonics more amenable to exploit parallelism within DNN models. Moreover, when coupled with other unique features such as low energy consumption, high channel capacity with wavelength-division multiplexing (WDM), and high speed, silicon photonics could potentially provide a viable technology for scaling DNN acceleration.In this paper, we propose Albireo, an analog photonic architecture for scaling DNN acceleration. By characterizing photonic devices such as microring resonators (MRRs) and Mach-Zehnder modulators (MZM) using photonic simulators, we develop realistic device models and outline their capability for system level acceleration. Using the device models, we develop an efficient broadcast combined with multicast data distribution by leveraging parameter sharing through unique WDM dot product processing. We evaluate the energy and throughput performance of Albireo on DNN models such as ResNet18, MobileNet and VGG16. When compared to cur-rent state-of-the-art electronic accelerators, Albireo increases throughput by 110 X, and improves energy-delay product (EDP) by an average of 74 X with current photonic devices. Furthermore, by considering moderate and aggressive photonic scaling, the proposed Albireo design shows that EDP can be reduced by at least 229 X.
科研通智能强力驱动
Strongly Powered by AbleSci AI