387 Developing and validating ultrasound-based radiomics models for predicting high-risk endometrial cancer

逻辑回归 医学 超声波 无线电技术 子宫内膜癌 放射科 单变量 癌症 多元统计 计算机科学 机器学习 内科学
作者
F. Moro,Michele Albanese,Laura Boldrini,Valentina Chiappa,Jacopo Lenkowicz,Francesca Bertolina,F. Mascilini,Rossana Moroni,Ma Gambacorta,Francesco Raspagliesi,Giovanni Scambia,A. C. Testa,Francesco Fanfani
标识
DOI:10.1136/ijgc-2021-esgo.136
摘要

Introduction/Background*

Transvaginal ultrasound examination is the first imaging investigation for endometrial cancer. Ultrasound-based models for predicting high risk endometrial cancer have recently been published. However, none of these models includes radiomics features. Radiomics is an innovative high throughput technique extracting and translating high numbers of features from medical images into mineable data. Aim of this study was to develop and validate ultrasound-based radiomics models, aiming to differentiating high risk category, as defined by ESMO-ESGO-ESTRO in 2016, versus the remaining categories of risk.

Methodology

This is a multicenter retrospective observational study. Patients with histologically confirmed diagnosis of endometrial cancer who had undergone preoperative ultrasound examination between 2016 and 2019 were identified from two centers. Patients recruited in Center 1 (Rome) were included as 'training set' (n=396), while patients enrolled in Center 2 (Milan), as 'external validation set' (n=102). Radiomics analysis was applied to the ultrasound images. Clinical (including preoperative biopsy), ultrasound and radiomics features that proved to be different at the univariate analysis on the training set were considered for multivariate analysis and for developing ultrasound-based machine learning assessment models.

Result(s)*

For discriminating high risk category versus the other categories one random forest model from the radiomics features (radiomics model), one binary logistic regression model from clinical and ultrasound features (clinical-ultrasound model), and another binary logistic regression model from clinical, ultrasound and previously selected radiomics features (mixed model) were created. In the validation set, the radiomics model for predicting high risk showed AUC 0.80, sensitivity 58.7%, specificity 85.7%, positive likelihood ratio (LR+) 4.10 and negative likelihood ratio (LR-) 0.48; the clinical-ultrasound model showed AUC 0.87, sensitivity 67.3%, specificity 89.2%, LR+ 6.29 and LR- 0.37; and the mixed model showed AUC 0.88, sensitivity 67.3%, specificity 91.0%, LR+ 7.55 and LR- 0.36 (table 1).

Conclusion*

The mixed model including radiomics, clinical (including preoperative biopsy) and ultrasound features provided the best performance, even if the accuracy was slightly higher in comparison with the model based only on clinical and ultrasound variables. Interestingly, the model based only on radiomics features was able to provide good accuracy to discriminate high risk group versus the others.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助银雀w采纳,获得10
2秒前
安详的曲奇完成签到,获得积分10
3秒前
4秒前
浮游应助fanfanqieqie采纳,获得10
6秒前
ymx完成签到,获得积分10
7秒前
暖暖完成签到,获得积分10
8秒前
niu发布了新的文献求助10
9秒前
陈陈陈介意完成签到,获得积分10
9秒前
10秒前
hs完成签到,获得积分10
12秒前
12秒前
fishswim1完成签到,获得积分10
13秒前
爱听歌老1发布了新的文献求助30
14秒前
15秒前
15秒前
俊逸若之完成签到 ,获得积分20
16秒前
杰杰讨厌科研完成签到 ,获得积分10
16秒前
共享精神应助迷路又菱采纳,获得10
17秒前
luo发布了新的文献求助30
17秒前
梦未凉完成签到,获得积分10
17秒前
狼道发布了新的文献求助10
17秒前
hhy完成签到,获得积分10
17秒前
17秒前
wjp关闭了wjp文献求助
17秒前
19秒前
宝可梦大师完成签到,获得积分10
19秒前
852应助平淡的忆之采纳,获得10
19秒前
19秒前
20秒前
科目三应助郝逍遥采纳,获得10
20秒前
22秒前
22秒前
MMM发布了新的文献求助30
22秒前
may完成签到,获得积分10
23秒前
小橘子发布了新的文献求助10
23秒前
松林完成签到,获得积分20
23秒前
lele发布了新的文献求助10
24秒前
银雀w发布了新的文献求助10
26秒前
zzz发布了新的文献求助10
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5307051
求助须知:如何正确求助?哪些是违规求助? 4452740
关于积分的说明 13855150
捐赠科研通 4340324
什么是DOI,文献DOI怎么找? 2383115
邀请新用户注册赠送积分活动 1377917
关于科研通互助平台的介绍 1345800