亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

387 Developing and validating ultrasound-based radiomics models for predicting high-risk endometrial cancer

逻辑回归 医学 超声波 无线电技术 子宫内膜癌 放射科 单变量 癌症 多元统计 计算机科学 机器学习 内科学
作者
F. Moro,Michele Albanese,Laura Boldrini,Valentina Chiappa,Jacopo Lenkowicz,Francesca Bertolina,F. Mascilini,Rossana Moroni,Ma Gambacorta,Francesco Raspagliesi,Giovanni Scambia,A. C. Testa,Francesco Fanfani
标识
DOI:10.1136/ijgc-2021-esgo.136
摘要

Introduction/Background*

Transvaginal ultrasound examination is the first imaging investigation for endometrial cancer. Ultrasound-based models for predicting high risk endometrial cancer have recently been published. However, none of these models includes radiomics features. Radiomics is an innovative high throughput technique extracting and translating high numbers of features from medical images into mineable data. Aim of this study was to develop and validate ultrasound-based radiomics models, aiming to differentiating high risk category, as defined by ESMO-ESGO-ESTRO in 2016, versus the remaining categories of risk.

Methodology

This is a multicenter retrospective observational study. Patients with histologically confirmed diagnosis of endometrial cancer who had undergone preoperative ultrasound examination between 2016 and 2019 were identified from two centers. Patients recruited in Center 1 (Rome) were included as 'training set' (n=396), while patients enrolled in Center 2 (Milan), as 'external validation set' (n=102). Radiomics analysis was applied to the ultrasound images. Clinical (including preoperative biopsy), ultrasound and radiomics features that proved to be different at the univariate analysis on the training set were considered for multivariate analysis and for developing ultrasound-based machine learning assessment models.

Result(s)*

For discriminating high risk category versus the other categories one random forest model from the radiomics features (radiomics model), one binary logistic regression model from clinical and ultrasound features (clinical-ultrasound model), and another binary logistic regression model from clinical, ultrasound and previously selected radiomics features (mixed model) were created. In the validation set, the radiomics model for predicting high risk showed AUC 0.80, sensitivity 58.7%, specificity 85.7%, positive likelihood ratio (LR+) 4.10 and negative likelihood ratio (LR-) 0.48; the clinical-ultrasound model showed AUC 0.87, sensitivity 67.3%, specificity 89.2%, LR+ 6.29 and LR- 0.37; and the mixed model showed AUC 0.88, sensitivity 67.3%, specificity 91.0%, LR+ 7.55 and LR- 0.36 (table 1).

Conclusion*

The mixed model including radiomics, clinical (including preoperative biopsy) and ultrasound features provided the best performance, even if the accuracy was slightly higher in comparison with the model based only on clinical and ultrasound variables. Interestingly, the model based only on radiomics features was able to provide good accuracy to discriminate high risk group versus the others.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
llk完成签到 ,获得积分10
刚刚
脑洞疼应助热情的安彤采纳,获得10
5秒前
oceanao应助stay采纳,获得10
6秒前
梨子完成签到,获得积分10
20秒前
呆梨医生完成签到,获得积分10
23秒前
卉卉完成签到,获得积分10
30秒前
Herzliya完成签到,获得积分10
31秒前
34秒前
36秒前
Herzliya发布了新的文献求助10
37秒前
peng发布了新的文献求助10
41秒前
斯文败类应助橘子汽水采纳,获得10
42秒前
外向白开水完成签到 ,获得积分10
45秒前
H先生完成签到,获得积分10
46秒前
46秒前
peng完成签到,获得积分20
47秒前
49秒前
Orange应助科研通管家采纳,获得10
49秒前
tuanheqi应助科研通管家采纳,获得50
49秒前
香蕉觅云应助科研通管家采纳,获得30
50秒前
50秒前
51秒前
1分钟前
Cathy完成签到,获得积分10
1分钟前
十三完成签到,获得积分10
1分钟前
绑定微信发布了新的文献求助10
1分钟前
橘子汽水发布了新的文献求助10
1分钟前
十三发布了新的文献求助10
1分钟前
小太阳完成签到 ,获得积分10
1分钟前
小逗比发布了新的文献求助10
1分钟前
FashionBoy应助瑶瑶乐园采纳,获得10
1分钟前
科研通AI2S应助Misaki采纳,获得10
1分钟前
1分钟前
zyutao完成签到,获得积分10
1分钟前
1分钟前
瑶瑶乐园发布了新的文献求助10
1分钟前
1分钟前
Aniya_Shine完成签到 ,获得积分10
1分钟前
1分钟前
眰恦发布了新的文献求助10
2分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162280
求助须知:如何正确求助?哪些是违规求助? 2813284
关于积分的说明 7899607
捐赠科研通 2472592
什么是DOI,文献DOI怎么找? 1316476
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142