387 Developing and validating ultrasound-based radiomics models for predicting high-risk endometrial cancer

逻辑回归 医学 超声波 无线电技术 子宫内膜癌 放射科 单变量 癌症 多元统计 计算机科学 机器学习 内科学
作者
F. Moro,Michele Albanese,Laura Boldrini,Valentina Chiappa,Jacopo Lenkowicz,Francesca Bertolina,F. Mascilini,Rossana Moroni,Ma Gambacorta,Francesco Raspagliesi,Giovanni Scambia,A. C. Testa,Francesco Fanfani
标识
DOI:10.1136/ijgc-2021-esgo.136
摘要

Introduction/Background*

Transvaginal ultrasound examination is the first imaging investigation for endometrial cancer. Ultrasound-based models for predicting high risk endometrial cancer have recently been published. However, none of these models includes radiomics features. Radiomics is an innovative high throughput technique extracting and translating high numbers of features from medical images into mineable data. Aim of this study was to develop and validate ultrasound-based radiomics models, aiming to differentiating high risk category, as defined by ESMO-ESGO-ESTRO in 2016, versus the remaining categories of risk.

Methodology

This is a multicenter retrospective observational study. Patients with histologically confirmed diagnosis of endometrial cancer who had undergone preoperative ultrasound examination between 2016 and 2019 were identified from two centers. Patients recruited in Center 1 (Rome) were included as 'training set' (n=396), while patients enrolled in Center 2 (Milan), as 'external validation set' (n=102). Radiomics analysis was applied to the ultrasound images. Clinical (including preoperative biopsy), ultrasound and radiomics features that proved to be different at the univariate analysis on the training set were considered for multivariate analysis and for developing ultrasound-based machine learning assessment models.

Result(s)*

For discriminating high risk category versus the other categories one random forest model from the radiomics features (radiomics model), one binary logistic regression model from clinical and ultrasound features (clinical-ultrasound model), and another binary logistic regression model from clinical, ultrasound and previously selected radiomics features (mixed model) were created. In the validation set, the radiomics model for predicting high risk showed AUC 0.80, sensitivity 58.7%, specificity 85.7%, positive likelihood ratio (LR+) 4.10 and negative likelihood ratio (LR-) 0.48; the clinical-ultrasound model showed AUC 0.87, sensitivity 67.3%, specificity 89.2%, LR+ 6.29 and LR- 0.37; and the mixed model showed AUC 0.88, sensitivity 67.3%, specificity 91.0%, LR+ 7.55 and LR- 0.36 (table 1).

Conclusion*

The mixed model including radiomics, clinical (including preoperative biopsy) and ultrasound features provided the best performance, even if the accuracy was slightly higher in comparison with the model based only on clinical and ultrasound variables. Interestingly, the model based only on radiomics features was able to provide good accuracy to discriminate high risk group versus the others.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助LILI采纳,获得10
刚刚
CipherSage应助ll采纳,获得10
刚刚
BIKO应助ll采纳,获得10
刚刚
十八完成签到 ,获得积分10
1秒前
papa完成签到,获得积分10
1秒前
2秒前
小二郎应助耿耿采纳,获得10
2秒前
dyy123发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
周亚男完成签到,获得积分10
3秒前
3秒前
搜集达人应助吉祥采纳,获得10
3秒前
无极微光应助HY采纳,获得20
3秒前
能干寻芹完成签到,获得积分10
4秒前
HAN发布了新的文献求助10
5秒前
浮游应助告元采纳,获得10
5秒前
静静发布了新的文献求助10
5秒前
123发布了新的文献求助10
6秒前
yy完成签到,获得积分10
6秒前
6秒前
默默的微笑完成签到,获得积分10
6秒前
8秒前
8秒前
科研通AI6应助波恰采纳,获得10
8秒前
林林林完成签到,获得积分10
8秒前
土豆不吃鱼完成签到,获得积分20
9秒前
时光静好应助归尘采纳,获得10
9秒前
辛勤的刺猬完成签到 ,获得积分10
9秒前
迷人的天抒完成签到 ,获得积分10
9秒前
传奇3应助waoller1采纳,获得10
10秒前
yzz完成签到,获得积分10
10秒前
10秒前
123完成签到,获得积分20
11秒前
yy发布了新的文献求助10
12秒前
花七童完成签到,获得积分10
12秒前
13秒前
林林林发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
李萌完成签到,获得积分10
14秒前
hyx完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941797
求助须知:如何正确求助?哪些是违规求助? 4207663
关于积分的说明 13078817
捐赠科研通 3986706
什么是DOI,文献DOI怎么找? 2182648
邀请新用户注册赠送积分活动 1198336
关于科研通互助平台的介绍 1110591