Solving the Dynamic Weapon Target Assignment Problem by an Improved Multiobjective Particle Swarm Optimization Algorithm

数学优化 计算机科学 渡线 粒子群优化 水准点(测量) 算法 数学 人工智能 大地测量学 地理
作者
Lingren Kong,Jianzhong Wang,Peng Zhao
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:11 (19): 9254-9254 被引量:21
标识
DOI:10.3390/app11199254
摘要

Dynamic weapon target assignment (DWTA) is an effective method to solve the multi-stage battlefield fire optimization problem, which can reflect the actual combat scenario better than static weapon target assignment (SWTA). In this paper, a meaningful and effective DWTA model is established, which contains two practical and conflicting objectives, namely, maximizing combat benefits and minimizing weapon costs. Moreover, the model contains limited resource constraints, feasibility constraints and fire transfer constraints. The existence of multi-objective and multi-constraint makes DWTA more complicated. To solve this problem, an improved multiobjective particle swarm optimization algorithm (IMOPSO) is proposed in this paper. Various learning strategies are adopted for the dominated and non-dominated solutions of the algorithm, so that the algorithm can learn and evolve in a targeted manner. In order to solve the problem that the algorithm is easy to fall into local optimum, this paper proposes a search strategy based on simulated binary crossover (SBX) and polynomial mutation (PM), which enables elitist information to be shared among external archive and enhances the exploratory capabilities of IMOPSO. In addition, a dynamic archive maintenance strategy is applied to improve the diversity of non-dominated solutions. Finally, this algorithm is compared with three state-of-the-art multiobjective optimization algorithms, including solving benchmark functions and DWTA model in this article. Experimental results show that IMOPSO has better convergence and distribution than the other three multiobjective optimization algorithms. IMOPSO has obvious advantages in solving multiobjective DWTA problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
踏实的白羊完成签到,获得积分10
刚刚
1秒前
学术嫪毐发布了新的文献求助10
1秒前
沈小葵完成签到,获得积分10
1秒前
1秒前
1秒前
H2J完成签到,获得积分10
2秒前
纯真新筠发布了新的文献求助10
2秒前
4秒前
4秒前
4秒前
小牛同志完成签到,获得积分10
5秒前
冥月发布了新的文献求助10
5秒前
AXDBB完成签到,获得积分10
5秒前
小马甲应助自由的小鸟采纳,获得10
5秒前
旋律依然发布了新的文献求助10
5秒前
6秒前
6秒前
SSDlk完成签到,获得积分10
7秒前
万能图书馆应助迷人问兰采纳,获得30
7秒前
所所应助xiaoan采纳,获得10
7秒前
面面完成签到,获得积分10
7秒前
希里发布了新的文献求助10
7秒前
9秒前
9秒前
李健应助zyw12138采纳,获得10
9秒前
10秒前
Accelerator完成签到,获得积分20
10秒前
10秒前
11秒前
合适台灯发布了新的文献求助30
11秒前
ding应助靓丽银耳汤采纳,获得10
12秒前
舒心的雪卉完成签到,获得积分20
12秒前
五氧化二磷完成签到,获得积分10
12秒前
TOMORI酱完成签到,获得积分10
13秒前
13秒前
cocu117发布了新的文献求助10
14秒前
小甘看世界完成签到,获得积分0
15秒前
16秒前
冥月完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950817
求助须知:如何正确求助?哪些是违规求助? 3496247
关于积分的说明 11080980
捐赠科研通 3226673
什么是DOI,文献DOI怎么找? 1783954
邀请新用户注册赠送积分活动 867992
科研通“疑难数据库(出版商)”最低求助积分说明 800993