Solving the Dynamic Weapon Target Assignment Problem by an Improved Multiobjective Particle Swarm Optimization Algorithm

数学优化 计算机科学 渡线 粒子群优化 水准点(测量) 算法 数学 人工智能 大地测量学 地理
作者
Lingren Kong,Jianzhong Wang,Peng Zhao
出处
期刊:Applied sciences [MDPI AG]
卷期号:11 (19): 9254-9254 被引量:21
标识
DOI:10.3390/app11199254
摘要

Dynamic weapon target assignment (DWTA) is an effective method to solve the multi-stage battlefield fire optimization problem, which can reflect the actual combat scenario better than static weapon target assignment (SWTA). In this paper, a meaningful and effective DWTA model is established, which contains two practical and conflicting objectives, namely, maximizing combat benefits and minimizing weapon costs. Moreover, the model contains limited resource constraints, feasibility constraints and fire transfer constraints. The existence of multi-objective and multi-constraint makes DWTA more complicated. To solve this problem, an improved multiobjective particle swarm optimization algorithm (IMOPSO) is proposed in this paper. Various learning strategies are adopted for the dominated and non-dominated solutions of the algorithm, so that the algorithm can learn and evolve in a targeted manner. In order to solve the problem that the algorithm is easy to fall into local optimum, this paper proposes a search strategy based on simulated binary crossover (SBX) and polynomial mutation (PM), which enables elitist information to be shared among external archive and enhances the exploratory capabilities of IMOPSO. In addition, a dynamic archive maintenance strategy is applied to improve the diversity of non-dominated solutions. Finally, this algorithm is compared with three state-of-the-art multiobjective optimization algorithms, including solving benchmark functions and DWTA model in this article. Experimental results show that IMOPSO has better convergence and distribution than the other three multiobjective optimization algorithms. IMOPSO has obvious advantages in solving multiobjective DWTA problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
你讲咩发布了新的文献求助10
1秒前
耍酷的枇杷完成签到,获得积分10
1秒前
小南完成签到,获得积分10
2秒前
科研通AI2S应助褚香旋采纳,获得10
2秒前
2秒前
3秒前
张孟孟完成签到,获得积分10
3秒前
4秒前
今安完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
迷路谷蓝发布了新的文献求助10
6秒前
6秒前
酷炫的大白完成签到,获得积分10
6秒前
HHYYAA发布了新的文献求助10
6秒前
林婧发布了新的文献求助10
6秒前
6秒前
6秒前
billkin完成签到,获得积分10
6秒前
端庄千琴完成签到,获得积分10
7秒前
8秒前
11关注了科研通微信公众号
8秒前
天涯比邻星完成签到 ,获得积分20
8秒前
103x发布了新的文献求助10
9秒前
乐观发布了新的文献求助10
9秒前
大聪明完成签到,获得积分10
9秒前
10秒前
褚香旋完成签到,获得积分10
10秒前
楠木发布了新的文献求助10
10秒前
个性湘发布了新的文献求助10
10秒前
感动水杯发布了新的文献求助10
10秒前
万能图书馆应助炙热秋天采纳,获得10
11秒前
七七发布了新的文献求助10
11秒前
11秒前
nanami发布了新的文献求助10
11秒前
11秒前
dbfl发布了新的文献求助10
11秒前
11秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338438
求助须知:如何正确求助?哪些是违规求助? 4475552
关于积分的说明 13928668
捐赠科研通 4370833
什么是DOI,文献DOI怎么找? 2401451
邀请新用户注册赠送积分活动 1394568
关于科研通互助平台的介绍 1366401