Solving the Dynamic Weapon Target Assignment Problem by an Improved Multiobjective Particle Swarm Optimization Algorithm

数学优化 计算机科学 渡线 粒子群优化 水准点(测量) 算法 数学 人工智能 大地测量学 地理
作者
Lingren Kong,Jianzhong Wang,Peng Zhao
出处
期刊:Applied sciences [MDPI AG]
卷期号:11 (19): 9254-9254 被引量:21
标识
DOI:10.3390/app11199254
摘要

Dynamic weapon target assignment (DWTA) is an effective method to solve the multi-stage battlefield fire optimization problem, which can reflect the actual combat scenario better than static weapon target assignment (SWTA). In this paper, a meaningful and effective DWTA model is established, which contains two practical and conflicting objectives, namely, maximizing combat benefits and minimizing weapon costs. Moreover, the model contains limited resource constraints, feasibility constraints and fire transfer constraints. The existence of multi-objective and multi-constraint makes DWTA more complicated. To solve this problem, an improved multiobjective particle swarm optimization algorithm (IMOPSO) is proposed in this paper. Various learning strategies are adopted for the dominated and non-dominated solutions of the algorithm, so that the algorithm can learn and evolve in a targeted manner. In order to solve the problem that the algorithm is easy to fall into local optimum, this paper proposes a search strategy based on simulated binary crossover (SBX) and polynomial mutation (PM), which enables elitist information to be shared among external archive and enhances the exploratory capabilities of IMOPSO. In addition, a dynamic archive maintenance strategy is applied to improve the diversity of non-dominated solutions. Finally, this algorithm is compared with three state-of-the-art multiobjective optimization algorithms, including solving benchmark functions and DWTA model in this article. Experimental results show that IMOPSO has better convergence and distribution than the other three multiobjective optimization algorithms. IMOPSO has obvious advantages in solving multiobjective DWTA problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研废物完成签到 ,获得积分10
1秒前
1秒前
安静柚子发布了新的文献求助30
2秒前
寻道图强应助hfy采纳,获得30
3秒前
王凡渡发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
科研通AI6应助Jodie采纳,获得10
6秒前
lichanshen完成签到,获得积分10
7秒前
跳跃的萧完成签到,获得积分10
8秒前
HSY发布了新的文献求助10
9秒前
岁大爷发布了新的文献求助10
10秒前
复杂的薯片完成签到,获得积分10
11秒前
浮游应助鲜艳的雨安采纳,获得10
17秒前
顺gsp完成签到 ,获得积分10
18秒前
Orange应助安静绯采纳,获得10
20秒前
追寻的访文完成签到,获得积分10
24秒前
27秒前
王凡渡完成签到,获得积分10
27秒前
28秒前
28秒前
28秒前
机智醉波完成签到,获得积分10
28秒前
30秒前
安静绯发布了新的文献求助10
31秒前
31秒前
诚熠发布了新的文献求助10
32秒前
33秒前
33秒前
蜡笔小新发布了新的文献求助10
36秒前
今后应助爱狗人士Hito采纳,获得10
36秒前
Vivian完成签到,获得积分10
36秒前
123发布了新的文献求助10
37秒前
暴富发布了新的文献求助10
37秒前
鲜艳的芹发布了新的文献求助10
37秒前
jixing完成签到,获得积分10
40秒前
秋qiu完成签到,获得积分10
40秒前
爆米花应助安静绯采纳,获得10
40秒前
英俊的铭应助yyanxuemin919采纳,获得10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560166
求助须知:如何正确求助?哪些是违规求助? 4645315
关于积分的说明 14674844
捐赠科研通 4586430
什么是DOI,文献DOI怎么找? 2516437
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460870