Solving the Dynamic Weapon Target Assignment Problem by an Improved Multiobjective Particle Swarm Optimization Algorithm

数学优化 计算机科学 渡线 粒子群优化 水准点(测量) 算法 数学 人工智能 大地测量学 地理
作者
Lingren Kong,Jianzhong Wang,Peng Zhao
出处
期刊:Applied sciences [MDPI AG]
卷期号:11 (19): 9254-9254 被引量:21
标识
DOI:10.3390/app11199254
摘要

Dynamic weapon target assignment (DWTA) is an effective method to solve the multi-stage battlefield fire optimization problem, which can reflect the actual combat scenario better than static weapon target assignment (SWTA). In this paper, a meaningful and effective DWTA model is established, which contains two practical and conflicting objectives, namely, maximizing combat benefits and minimizing weapon costs. Moreover, the model contains limited resource constraints, feasibility constraints and fire transfer constraints. The existence of multi-objective and multi-constraint makes DWTA more complicated. To solve this problem, an improved multiobjective particle swarm optimization algorithm (IMOPSO) is proposed in this paper. Various learning strategies are adopted for the dominated and non-dominated solutions of the algorithm, so that the algorithm can learn and evolve in a targeted manner. In order to solve the problem that the algorithm is easy to fall into local optimum, this paper proposes a search strategy based on simulated binary crossover (SBX) and polynomial mutation (PM), which enables elitist information to be shared among external archive and enhances the exploratory capabilities of IMOPSO. In addition, a dynamic archive maintenance strategy is applied to improve the diversity of non-dominated solutions. Finally, this algorithm is compared with three state-of-the-art multiobjective optimization algorithms, including solving benchmark functions and DWTA model in this article. Experimental results show that IMOPSO has better convergence and distribution than the other three multiobjective optimization algorithms. IMOPSO has obvious advantages in solving multiobjective DWTA problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
fzzf完成签到,获得积分10
刚刚
小欣发布了新的文献求助30
刚刚
科研通AI6应助舒心语梦采纳,获得10
刚刚
Qu_Yun发布了新的文献求助30
刚刚
从前慢发布了新的文献求助20
刚刚
一叶知秋应助静素雅格采纳,获得10
1秒前
1秒前
Jared应助木木水采纳,获得10
1秒前
1秒前
Lucas应助September采纳,获得10
2秒前
2秒前
科研虫完成签到 ,获得积分20
2秒前
2秒前
2秒前
郭逍遥发布了新的文献求助10
3秒前
张铭完成签到,获得积分10
3秒前
Ava应助zrk采纳,获得10
4秒前
4秒前
ljx发布了新的文献求助10
4秒前
隐形曼青应助ybigwhite采纳,获得10
4秒前
5秒前
是小曹啊完成签到,获得积分10
5秒前
羊羊羊完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
wanci应助郭哈哈采纳,获得10
5秒前
6秒前
冷清之完成签到 ,获得积分10
6秒前
6秒前
zj发布了新的文献求助30
6秒前
7秒前
懦弱的妍发布了新的文献求助10
7秒前
姗姗发布了新的文献求助10
7秒前
phil发布了新的文献求助10
8秒前
阳光发布了新的文献求助10
9秒前
深情安青应助wu采纳,获得10
9秒前
茶辞完成签到,获得积分10
9秒前
10秒前
wengjiaqi发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525920
求助须知:如何正确求助?哪些是违规求助? 4616027
关于积分的说明 14551672
捐赠科研通 4554261
什么是DOI,文献DOI怎么找? 2495729
邀请新用户注册赠送积分活动 1476208
关于科研通互助平台的介绍 1447848