MCCR: Learning Multi-order Convolutional Correlations for Recommendation

计算机科学 卷积神经网络 推荐系统 图形 特征(语言学) 人工智能 图层(电子) 机器学习 特征学习 相似性(几何) 数据挖掘 理论计算机科学
作者
Yingshuai Kou,Neng Gao,Jia Peng,Jiong Wang,Min Li,Shan Yiwei
出处
期刊:Ubiquitous Intelligence and Computing
标识
DOI:10.1109/swc50871.2021.00015
摘要

Graph Neural Networks (GNNs) has been widely used to address the sparsity and cold start problems in recommendation system. By propagating embeddings from multi-hop neighbor nodes among the interaction graph and update target user and item embeddings, GNNs-based methods can achieve better recommendation performance. But those methods directly concatenate the output of each layer and ignore the different influences between different layers, and they simply use the inner product of the user and item’s embeddings to calculate the similarity and make recommendation based on it, which is insufficient to reveal the complex and nonlinear interactions.In this work, we propose to learn multi-order interactions between users and items and capture correlations between different-order information. We design a new recommendation framework MCCR, which treats each layer’s output as differentorder feature, and propose a multi-order interaction module to represent feature interactions. We adopt a multi-layer 3D CNN module to learn high-order interaction signals between users and items in an explicit approach. Through extensive experiments on three real-world datasets, which shows that MCCR evidently outperforms the state-of-the-art methods consistently.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
结实的蘑菇完成签到 ,获得积分10
刚刚
刚刚
萧寒发布了新的文献求助10
3秒前
Verity应助张zhang采纳,获得10
3秒前
4秒前
5秒前
6秒前
8秒前
fanfan完成签到 ,获得积分10
8秒前
我是老大应助一蓑烟雨1122采纳,获得10
10秒前
wk发布了新的文献求助10
11秒前
阳光发布了新的文献求助10
12秒前
白子双发布了新的文献求助10
13秒前
13秒前
研友_VZG7GZ应助极电采纳,获得10
14秒前
15秒前
20秒前
21秒前
Mia233完成签到 ,获得积分10
21秒前
李健应助科研通管家采纳,获得30
21秒前
英俊的铭应助科研通管家采纳,获得10
22秒前
shhoing应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
ding应助科研通管家采纳,获得10
22秒前
戴亮应助科研通管家采纳,获得10
22秒前
英姑应助科研通管家采纳,获得10
22秒前
yyzhou应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
Ava应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
23秒前
慕青应助科研通管家采纳,获得10
23秒前
烟花应助科研通管家采纳,获得10
23秒前
上官若男应助科研通管家采纳,获得10
23秒前
李健应助科研通管家采纳,获得10
23秒前
大个应助科研通管家采纳,获得10
23秒前
yyzhou应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560313
求助须知:如何正确求助?哪些是违规求助? 4645465
关于积分的说明 14675208
捐赠科研通 4586593
什么是DOI,文献DOI怎么找? 2516488
邀请新用户注册赠送积分活动 1490109
关于科研通互助平台的介绍 1460915