希尔伯特-黄变换
无线电频率
计算机科学
人工智能
指纹(计算)
信号(编程语言)
模式识别(心理学)
噪音(视频)
降噪
分解
频道(广播)
模式(计算机接口)
指纹识别
特征提取
时频分析
语音识别
计算机视觉
电信
生态学
滤波器(信号处理)
图像(数学)
生物
程序设计语言
操作系统
作者
Chengtao Xu,Fengyu He,Bowen Chen,Yushan Jiang,Houbing Song
标识
DOI:10.1109/icassp39728.2021.9414985
摘要
Radio frequency (RF) signal classification has significantly been used for detecting and identifying the features of unknown unmanned aerial vehicles (UAVs). This paper proposes a method using empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD) on extracting the communication channel characteristics of intruding UAVs. The decomposed intrinsic mode functions (IMFs) except noise components are selected for RF signal pattern recognition based on machine learning (ML). The classification results show that the denoising effects introduced by EMD and EEMD could both fit in improving the detection accuracy with different features of RF communication channel, especially on identifying time-varying RF signal sources.
科研通智能强力驱动
Strongly Powered by AbleSci AI