堆栈(抽象数据类型)
瓶颈
燃料电池
耐久性
质子交换膜燃料电池
计算机科学
功率(物理)
电力系统
汽车工程
作者
Mohsen Bahrami,Jean-Philippe Martin,Gaël Maranzana,Serge Pierfederici,Mathieu Weber,Sophie Didierjean
标识
DOI:10.1016/j.apenergy.2021.118070
摘要
• A fuel cell management system is proposed to deal with the instability of cells. • A mathematical model is utilized to detect the instability of cells inside a stack. • A fuzzy logic based strategy is used to change the operating condition of cells. • Two major instabilities of cells can be avoided by using the proposed system. • The proposed system is validated by experiments. The lifetime and cost are two bottlenecks in the widespread use of fuel cells. Increasing the lifetime of the fuel cell can also counteract the cost justification bottleneck. However, this depends on the method of extending the life of the fuel cell. The durability of Polymer Electrolyte Membrane Fuel Cells (PEMFCs) can be improved using a management system. This management system must control the operating condition of cells or cell groups in such a way that the electrochemical and fluidic instabilities can be avoided to improve the lifetime of a stack. Developing this Fuel Cell Management System (FCMS) is challenging due to the coupling between cells inside a stack. In this paper, an FCMS is proposed. It can detect the instability of cell groups and change their reference power based on the detected instabilities. Since a mathematical model has a high ability to describe the phenomena occurring in a fuel cell, this paper uses a model to describe its operating conditions. The reference power of the cell groups can be changed using a developed power electronics structure. The last piece of the FCMS puzzle is to develop a management strategy. This strategy is developed in this paper. Eventually, the proposed system is evaluated experimentally. The experimental results validate the effectiveness of the proposed system.
科研通智能强力驱动
Strongly Powered by AbleSci AI