Data-model interactive prognosis for multi-sensor monitored stochastic degrading devices

预言 计算机科学 数据挖掘 领域(数学) 传感器融合 保险丝(电气) 随机建模 降级(电信) 过程(计算) 随机过程 工程类 人工智能 数学 统计 操作系统 电气工程 电信 纯数学
作者
Tianmei Li,Xiaosheng Si,Hong Pei,Li Sun
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:167: 108526-108526 被引量:44
标识
DOI:10.1016/j.ymssp.2021.108526
摘要

With advances in sensing and monitoring techniques, real time multi-sensor monitoring data of stochastic degrading devices has become the reality. How to effectively fuse these multi-sensor monitoring data to first construct the composite health index (CHI) and then model its degradation evolving process has become the emerging topic in the field of the remaining useful life (RUL) prediction. However, existing works treat the CHI construction and degradation modeling for prognostics under multi-sensor data as the disjoint problems rather than both though they are closely related in nature. To address this issue, this paper presents a novel data-model interactive RUL prediction method for multi-sensor monitored stochastic degrading devices. In the proposed method, based on the CHI extracted from multi-sensor historical data and the associated lifetime prediction via stochastic degradation modeling, an optimization objective function synthesizing the mean squared error between the predicted life and the actual life as well as the variance of the predicted life is constructed. As such, a closed-loop feedback mechanism is established for the CHI constructing and stochastic degradation modeling. Based on this feedback mechanism, the fusion coefficients for multi-sensor data and the failure threshold of the associated CHI are reversely optimized to realize the collaborative interaction between the CHI constructing and stochastic degradation modeling. To do so, the goal of making the constructed CHI automatically match the adopted stochastic degradation model can be achieved naturally. To make the degradation model accurately reflect the current reality of the in-service device, a sequential Bayesian method is proposed to update the degradation model parameters. Based on the updated model, the RUL distribution can be derived under the concept of the first passage time to achieve the prognosis. Finally, through multi-sensor data of aircraft gas turbine engines, we justify the necessity of applying the proposed method in prognosis and show its advantages in the improvements of the signal quality and prognosis accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
TTfire完成签到,获得积分10
刚刚
英姑应助美好斓采纳,获得10
刚刚
1秒前
缓慢的谷秋完成签到,获得积分10
2秒前
万能图书馆应助wzppp采纳,获得10
2秒前
小仙虎殿下完成签到 ,获得积分10
2秒前
烟花应助Vaying采纳,获得30
4秒前
4秒前
4秒前
时言序发布了新的文献求助10
5秒前
5秒前
khurram发布了新的文献求助10
7秒前
wave完成签到 ,获得积分10
9秒前
1234发布了新的文献求助10
9秒前
一一应助安富厚采纳,获得10
9秒前
FashionBoy应助Wcy采纳,获得10
11秒前
11秒前
zaozao完成签到,获得积分20
12秒前
Murphy_12完成签到 ,获得积分10
12秒前
嗨记得看关注了科研通微信公众号
12秒前
在水一方应助时言序采纳,获得10
15秒前
温暖凡灵完成签到,获得积分10
16秒前
wzppp发布了新的文献求助10
17秒前
18秒前
cc完成签到 ,获得积分10
19秒前
无花果应助小冉采纳,获得10
22秒前
Junlei完成签到,获得积分10
27秒前
29秒前
29秒前
Archers完成签到 ,获得积分10
30秒前
30秒前
土豆发布了新的文献求助10
30秒前
柳叶刀小猪应助1234采纳,获得10
31秒前
美好斓发布了新的文献求助10
34秒前
shiyuhangsyh完成签到 ,获得积分10
34秒前
34秒前
35秒前
虚心的鹭洋完成签到,获得积分10
37秒前
38秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240790
求助须知:如何正确求助?哪些是违规求助? 2885503
关于积分的说明 8238924
捐赠科研通 2553931
什么是DOI,文献DOI怎么找? 1382078
科研通“疑难数据库(出版商)”最低求助积分说明 649461
邀请新用户注册赠送积分活动 625079