木聚糖
细胞壁
硅
纤维素
纤维素酶
纳米尺度
材料科学
基质(水族馆)
扩张素
细菌纤维素
纳米技术
化学工程
降级(电信)
化学
生物物理学
有机化学
生物化学
计算机科学
电信
基因表达
工程类
地质学
海洋学
基因
生物
作者
Junbao Pu,Lijun Wang,Wei Zhang,Jie Ma,Xiuqing Zhang,Christine V. Putnis
标识
DOI:10.1016/j.carbpol.2021.118057
摘要
Plant cell walls exhibit excellent mechanical properties, which form the structural basis for sustainable bioresources and multifunctional nanocelluloses. The wall nanomechanical properties of living cells through covalent modifications of hybrid inorganic elements, such as silicon, may confer significant influence on local mechano-response and enzymatic degradation. Here, we present a combination of ex situ measurements of enzyme-released oligosaccharide fragments using MALDI-TOF MS and in situ atomic force microscopy (AFM) imaging through PeakForce quantitative nanomechanical mapping of tip-functionalized single-molecule enzyme-polysaccharide substrate recognition and the nanoscale dissolution kinetics of individual cellulose microfibrils of living rice (Oryza sativa) cells following silicate cross-linking of cell wall xyloglucan. We find that xyloglucan-bound silicon enhances the resistance to degradation by cellulase and improves the wall nanomechanical properties in the elastic modulus at the single-cell level. The findings establish a direct link between an inorganic element of silicon and the nanoscale architecture of plant cell wall materials for sustainable utilization.
科研通智能强力驱动
Strongly Powered by AbleSci AI