Multi-omics integration in the age of million single-cell data

数据集成 背景(考古学) 组学 可视化 模式 过程(计算) 推论 计算生物学 数据挖掘 数据类型 计算机科学 生物学数据 数据科学 系统生物学 生物信息学 人工智能 生物 古生物学 社会学 程序设计语言 操作系统 社会科学
作者
Zhen Miao,Benjamin D. Humphreys,Andrew P. McMahon,Junhyong Kim
出处
期刊:Nature Reviews Nephrology [Nature Portfolio]
卷期号:17 (11): 710-724 被引量:159
标识
DOI:10.1038/s41581-021-00463-x
摘要

An explosion in single-cell technologies has revealed a previously underappreciated heterogeneity of cell types and novel cell-state associations with sex, disease, development and other processes. Starting with transcriptome analyses, single-cell techniques have extended to multi-omics approaches and now enable the simultaneous measurement of data modalities and spatial cellular context. Data are now available for millions of cells, for whole-genome measurements and for multiple modalities. Although analyses of such multimodal datasets have the potential to provide new insights into biological processes that cannot be inferred with a single mode of assay, the integration of very large, complex, multimodal data into biological models and mechanisms represents a considerable challenge. An understanding of the principles of data integration and visualization methods is required to determine what methods are best applied to a particular single-cell dataset. Each class of method has advantages and pitfalls in terms of its ability to achieve various biological goals, including cell-type classification, regulatory network modelling and biological process inference. In choosing a data integration strategy, consideration must be given to whether the multi-omics data are matched (that is, measured on the same cell) or unmatched (that is, measured on different cells) and, more importantly, the overall modelling and visualization goals of the integrated analysis. Analyses of single-cell, multi-omics datasets have potential to provide new insights into biological processes; however, the integration of these complex datasets represents a considerable challenge. This Review describes the principles underlying the integration of multimodal data measured on the same cell (that is, matched data) and on different cells (unmatched data), outlining developments in computational methods and data visualization approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZhouYW完成签到,获得积分0
1秒前
我爱Chem完成签到 ,获得积分10
2秒前
sylinmm完成签到,获得积分10
3秒前
DY完成签到,获得积分10
3秒前
manmanzhong完成签到 ,获得积分10
4秒前
wipmzxu完成签到,获得积分10
5秒前
5秒前
yiyi完成签到,获得积分10
6秒前
踏水追风完成签到,获得积分10
7秒前
youili完成签到 ,获得积分10
7秒前
9秒前
食草味完成签到,获得积分20
10秒前
凌兰完成签到 ,获得积分10
10秒前
XZ完成签到,获得积分10
11秒前
小羊完成签到 ,获得积分10
11秒前
陈牛逼完成签到 ,获得积分10
11秒前
斯文败类应助adeno采纳,获得10
12秒前
积极废物完成签到 ,获得积分10
13秒前
深情安青应助贾不可采纳,获得10
13秒前
shimenwanzhao完成签到 ,获得积分0
14秒前
苻醉山完成签到 ,获得积分0
17秒前
DezhaoWang完成签到,获得积分10
17秒前
memory完成签到,获得积分10
17秒前
山神厘子完成签到,获得积分10
17秒前
犹豫山河完成签到,获得积分20
21秒前
leo完成签到 ,获得积分10
21秒前
hyf完成签到 ,获得积分10
22秒前
双青豆完成签到 ,获得积分10
24秒前
里埃尔塞因斯完成签到 ,获得积分10
24秒前
tetrakis完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助10
27秒前
27秒前
彭于彦祖完成签到,获得积分0
28秒前
王QQ完成签到 ,获得积分10
28秒前
和风完成签到 ,获得积分10
28秒前
万能图书馆应助贾不可采纳,获得10
28秒前
CLY完成签到,获得积分10
29秒前
miaomiao发布了新的文献求助100
33秒前
三杠完成签到 ,获得积分10
33秒前
嗒嗒完成签到,获得积分10
33秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015708
求助须知:如何正确求助?哪些是违规求助? 3555661
关于积分的说明 11318291
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027