亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic Rail Surface Defects Inspection Based on Mask R-CNN

分割 计算机科学 磁道(磁盘驱动器) 领域(数学) 最小边界框 人工智能 过程(计算) 路面 检查时间 曲面(拓扑) 深度学习 计算机视觉 工程类 模拟 图像(数学) 操作系统 发展心理学 数学 土木工程 纯数学 心理学 几何学
作者
Feng Guo,Yu Qian,Dimitris Rizos,Zhi Suo,Xiaobin Chen
出处
期刊:Transportation Research Record [SAGE]
卷期号:2675 (11): 655-668 被引量:32
标识
DOI:10.1177/03611981211019034
摘要

Rail surface defects have negative impacts on riding comfort and track safety, and could even lead to accidents. Based on the safety database (2020) of the Federal Railroad Administration (FRA), rail surface defects have been among the main factors causing derailments. During the past decades, there have been many efforts to detect such rail surface defects. However, the applications of earlier methods are limited by the high requirements of specialized equipment and personnel training. To date, rail surface defect inspection is still a very labor-intensive and time-consuming process, which hardly satisfies the field maintenance expectations. Therefore, a cost-effective and user-friendly automatic system that can inspect the rail surface defects with high accuracy is urgently needed. To address this issue, this study proposes a computer vision-based instance segmentation framework for rail surface defect inspection. A rail surface database including 1,040 images (260 source images and 780 augmented images) has been built. The classic instance segmentation model, Mask R-CNN, has been re-trained and fine-tuned for inspecting rail surface defects with the customized dataset. The influences of different backbones and learning rates are investigated and discussed. Experimental results indicate the ResNet101 backbone reaches better inspection capability. With a learning rate of 0.005, the re-trained Mask R-CNN model can achieve the best performance on the bounding box and mask predictions. Sixteen images are used to test the inspection performance of the fine-tuned model. The results are promising and indicate potential field applications in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助科研通管家采纳,获得10
2秒前
pop完成签到,获得积分10
4秒前
瘦瘦的铅笔完成签到 ,获得积分10
5秒前
搜集达人应助lalalatiancai采纳,获得10
8秒前
9秒前
点点zzz发布了新的文献求助10
14秒前
愉快凡旋完成签到,获得积分10
14秒前
李爱国应助科研小白采纳,获得10
18秒前
长情黄蜂发布了新的文献求助200
23秒前
29秒前
科研通AI2S应助文武采纳,获得10
30秒前
31秒前
自由的水杯完成签到,获得积分10
32秒前
34秒前
科研小白发布了新的文献求助10
35秒前
36秒前
36秒前
lalalatiancai发布了新的文献求助10
38秒前
40秒前
50秒前
lalalatiancai完成签到,获得积分20
52秒前
ccherty发布了新的文献求助10
57秒前
www完成签到 ,获得积分10
58秒前
58秒前
程风破浪完成签到,获得积分10
1分钟前
鹏程万里完成签到,获得积分10
1分钟前
可爱的函函应助科研小白采纳,获得10
1分钟前
1分钟前
1分钟前
悄悄拔尖儿完成签到 ,获得积分10
1分钟前
1分钟前
科研小白发布了新的文献求助10
1分钟前
源源源完成签到 ,获得积分10
1分钟前
长情黄蜂发布了新的文献求助10
1分钟前
FashionBoy应助zf2023采纳,获得10
1分钟前
1分钟前
1分钟前
Drxie发布了新的文献求助10
1分钟前
英俊的铭应助AA采纳,获得10
1分钟前
一夜很静应助蔡从安采纳,获得10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561907
求助须知:如何正确求助?哪些是违规求助? 3135489
关于积分的说明 9412388
捐赠科研通 2835888
什么是DOI,文献DOI怎么找? 1558793
邀请新用户注册赠送积分活动 728452
科研通“疑难数据库(出版商)”最低求助积分说明 716832