Self-Attention Bi-LSTM Networks for Radar Signal Modulation Recognition

计算机科学 稳健性(进化) 自相关 雷达 人工智能 冗余(工程) 人工神经网络 计算复杂性理论 模式识别(心理学) 卷积神经网络 调制(音乐) 语音识别 算法 电信 数学 操作系统 美学 哲学 统计 基因 生物化学 化学
作者
Shunjun Wei,Qizhe Qu,Xiangfeng Zeng,Jiadian Liang,Jun Shi,Xiaoling Zhang
出处
期刊:IEEE Transactions on Microwave Theory and Techniques 卷期号:69 (11): 5160-5172 被引量:58
标识
DOI:10.1109/tmtt.2021.3112199
摘要

As the electromagnetic environment in battlefields is more and more complex, automatic modulation recognition for radar signals is becoming vital and challenging. Traditional methods are more likely to cause lower recognition accuracy with higher computational complexity in low signal-to-noise ratio (SNR). Feature redundancy especially for handcrafted features is one of the shortcomings of deep-learning-based methods. In this article, a novel end-to-end sequence-based network that consists of a shallow convolutional neural network, a bidirectional long short-term memory (Bi-LSTM) network strengthening with a self-attention mechanism, and a dense neural network is constructed to recognize eight kinds of intrapulse modulations of radar signals. The autocorrelation functions of received radar signals are first calculated as autocorrelation features. Then, these features are employed as inputs of the proposed network which owns significant sequence processing advantages and adaptive selection ability of features. Finally, the proposed network outputs prediction modulations directly. The simulation results verify the robustness and effectiveness of autocorrelation features. And the proposed network achieves about 61.25% accuracy at −20 dB and more than 95% accuracy at −10 dB. Compared with four state-of-the-art networks, the proposed network has better recognition performance especially at low SNRs with much lower computational complexity. Results on measured signals also demonstrate that the proposed network outperforms these four networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
i1发布了新的文献求助10
刚刚
1秒前
1秒前
丘比特应助小白采纳,获得10
1秒前
Berniece发布了新的文献求助10
2秒前
CipherSage应助organicboy采纳,获得10
2秒前
2秒前
美好斓发布了新的文献求助50
3秒前
4秒前
爱笑夜蕾发布了新的文献求助10
6秒前
6秒前
yang发布了新的文献求助10
6秒前
丸子发布了新的文献求助10
6秒前
7秒前
小蘑菇应助驰驰采纳,获得10
8秒前
8秒前
URBANSyndrazZ关注了科研通微信公众号
9秒前
爱笑夜蕾完成签到,获得积分10
9秒前
10秒前
Jason应助fangfang采纳,获得20
11秒前
慕青应助qiao采纳,获得10
11秒前
田様应助要懒死了hhh采纳,获得10
13秒前
13秒前
13秒前
完美世界应助yang采纳,获得10
13秒前
小白发布了新的文献求助10
14秒前
14秒前
归海平灵完成签到,获得积分10
14秒前
科研通AI5应助rachel03采纳,获得10
14秒前
Berniece完成签到,获得积分10
15秒前
归海平灵发布了新的文献求助100
17秒前
小蘑菇应助任小萱采纳,获得10
17秒前
18秒前
JamesPei应助放牛班的春天采纳,获得10
18秒前
首席医官完成签到,获得积分10
18秒前
一一发布了新的文献求助10
18秒前
若狂发布了新的文献求助10
19秒前
19秒前
heiehi完成签到,获得积分10
20秒前
Jian完成签到,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542895
求助须知:如何正确求助?哪些是违规求助? 3120176
关于积分的说明 9341944
捐赠科研通 2818272
什么是DOI,文献DOI怎么找? 1549447
邀请新用户注册赠送积分活动 722160
科研通“疑难数据库(出版商)”最低求助积分说明 712978