数学
索波列夫空间
多项式次数
理论(学习稳定性)
投影(关系代数)
顶点(图论)
学位(音乐)
多边形网格
维数(图论)
数学分析
多项式的
组合数学
纯数学
几何学
图形
算法
计算机科学
机器学习
物理
声学
作者
Lars Diening,Johannes Storn,Tabea Tscherpel
摘要
We show stability of the $L^2$-projection onto Lagrange finite element spaces with respect to (weighted) $L^p$ and $W^{1,p}$-norms for any polynomial degree and for any space dimension under suitable conditions on the mesh grading. This includes $W^{1,2}$-stability in two space dimensions for any polynomial degree and meshes generated by newest vertex bisection. Under realistic but conjectured assumptions on the mesh grading in three dimensions we show $W^{1,2}$-stability for all polynomial degrees. We also propose a modified bisection strategy that leads to better $W^{1,p}$-stability. Moreover, we investigate the stability of the $L^2$-projection onto Crouzeix-Raviart elements.
科研通智能强力驱动
Strongly Powered by AbleSci AI