材料科学
阴极
同种类的
化学工程
化学物理
纳米技术
热力学
物理
工程类
物理化学
化学
作者
Yafen Chen,Yanchen Liu,Jingchao Zhang,Zhu He,Yang Ren,Wei Wang,Qi Zhang,Shouxin Zhang,Qunhui Yuan,Guoxing Chen,Leighanne C. Gallington,Kaikai Li,Xingjun Liu,Junwei Wu,Qi Liu,Yanan Chen
标识
DOI:10.1016/j.ensm.2022.07.016
摘要
With the advantages of high energy density and low manufacture cost, lithium-rich layered oxides (LLOs), typically with a layered O3-type structure, are regarded as promising cathodes for lithium-ion batteries (LIBs), but their broad usages are hindered by severe voltage decay over cycling. Although recent progress in O2-type LLOs has aroused interest for their less voltage decay, the critical barrier of unsatisfactory capacity retention has not been overcome yet. To tackle these handicaps, herein we design a new type of LLO (O2/O3-type LLO) with a homogeneous hybrid structure, where the O2 and O3 lattice stacking sequences are arranged alternatively. Benefitting from this novel O2/O3 hybrid structure, the designed material shows greatly improved voltage and capacity stability than that of pure O2- and O3-type LLOs. Revealed by in-situ synchrotron X-ray diffraction and operando differential electrochemical mass spectra, the O2/O3-hybrid LLO cathode shows a more reversible structural evolution, smaller volume change and suppressed oxygen loss during the electrochemical processes. Our approach has initiated a new way to reduce the capacity and voltage decay of LLOs, which endows great promise to the development of high-energy-density LIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI