已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of Simplified Models for Non-Destructive Hyperspectral Imaging Monitoring of S-ovalbumin Content in Eggs during Storage

高光谱成像 卵清蛋白 内容(测量理论) 生物系统 化学 计算机科学 生物 人工智能 数学 免疫学 免疫系统 数学分析
作者
Kunshan Yao,Jun Sun,Jiehong Cheng,Min Xu,Chen Chen,Xin Zhou,Chunxia Dai
出处
期刊:Foods [MDPI AG]
卷期号:11 (14): 2024-2024 被引量:9
标识
DOI:10.3390/foods11142024
摘要

S-ovalbumin content is an indicator of egg freshness and has an important impact on the quality of processed foods. The objective of this study is to develop simplified models for monitoring the S-ovalbumin content of eggs during storage using hyperspectral imaging (HSI) and multivariate analysis. The hyperspectral images of egg samples at different storage periods were collected in the wavelength range of 401-1002 nm, and the reference S-ovalbumin content was determined by spectrophotometry. The standard normal variate (SNV) was employed to preprocess the raw spectral data. To simplify the calibration models, competitive adaptive reweighted sampling (CARS) was applied to select feature wavelengths from the whole spectral range. Based on the full and feature wavelengths, partial least squares regression (PLSR) and least squares support vector machine (LSSVM) models were developed, in which the simplified LSSVM model yielded the best performance with a coefficient of determination for prediction (R2P) of 0.918 and a root mean square error for prediction (RMSEP) of 7.215%. By transferring the quantitative model to the pixels of hyperspectral images, the visualizing distribution maps were generated, providing an intuitive and comprehensive evaluation for the S-ovalbumin content of eggs, which helps to understand the conversion of ovalbumin into S-ovalbumin during storage. The results provided the possibility of implementing a multispectral imaging technique for online monitoring the S-ovalbumin content of eggs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qxy发布了新的文献求助50
1秒前
1秒前
卢敏明发布了新的文献求助10
1秒前
zzmm应助万枣今天学习了吗采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得30
4秒前
4秒前
ding应助科研通管家采纳,获得10
4秒前
4秒前
Ava应助感动的百川采纳,获得10
4秒前
4秒前
ok完成签到,获得积分10
6秒前
小二郎应助neechine采纳,获得10
10秒前
Ericlee发布了新的文献求助10
11秒前
11秒前
11秒前
打打应助糖ing采纳,获得20
12秒前
CipherSage应助安静的惜海采纳,获得10
13秒前
嘟嘟发布了新的文献求助10
14秒前
肉丸发布了新的文献求助10
16秒前
xvzhenyuan发布了新的文献求助30
17秒前
丘比特应助Pengh采纳,获得10
18秒前
我要读博士完成签到 ,获得积分10
19秒前
Hello应助胡林采纳,获得10
20秒前
21秒前
肚皮完成签到 ,获得积分10
23秒前
27秒前
28秒前
申申来啦应助锦鲤大王采纳,获得10
29秒前
Jasper应助ngg采纳,获得50
29秒前
11发布了新的文献求助10
31秒前
31秒前
科研通AI2S应助小坏蛋采纳,获得10
32秒前
酷酷河马发布了新的文献求助10
32秒前
思源应助老潘采纳,获得10
32秒前
哇哈哈发布了新的文献求助10
33秒前
mczy4完成签到,获得积分10
33秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248529
求助须知:如何正确求助?哪些是违规求助? 2891960
关于积分的说明 8269265
捐赠科研通 2559983
什么是DOI,文献DOI怎么找? 1388824
科研通“疑难数据库(出版商)”最低求助积分说明 650913
邀请新用户注册赠送积分活动 627798