A Neural Ordinary Differential Equations (ODE)-Based Model with Attention Mechanism for Tumor Segmentation in Breast Ultrasound Images

颂歌 常微分方程 分割 超声波 人工智能 机制(生物学) 人工神经网络 微分方程 模式识别(心理学) 计算机科学 数学 应用数学 医学 放射科 数学分析 物理 量子力学
作者
Jintao Ru,Beichen Lu,Buran Chen,Jialin Shi,Gaoxiang Chen,Meihao Wang,Zhifang Pan,Lin Ying,Jiejie Zhou,Xiaoming Liu,Chen Zhang
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4137158
摘要

Breast cancer is fairly common among the women worldwide, and ultrasound for screening and assessing breast masses is one of the most frequently used approaches due to its advantages like portable, noninvasive and easy to operate. The automatic tumor segmentation in breast ultrasound images is conducive to clinical diagnosis and treatment. Deep neural network for segmentation has become a popular tool nowadays to assist doctors and provide the references but it still faces some challenges such as large amounts of parameters, lack of interpretability, overfitting problem, etc. In this paper, we propose a segmentation model named Att-U-Node which combines a neural ODE-based framework U-Node and an attention-based module CBAM, trying to alleviate the problems mentioned above. Three public available breast ultrasound image datasets including BUSI, BUS and OASBUD as well as a private breast DCE-MRI dataset are used to measure the performance of the proposed model and the related neural networks and then we further extend experiments to 3D scenes for tumor segmentation with the data selected from QIN Breast DCE-MRI. The experimental results show that our proposed Att-U-Node outperforms the comparison methods with respect to the most of the metrics while mitigates the common problems of deep neural network.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
@_@发布了新的文献求助10
4秒前
FashionBoy应助fuyuan采纳,获得30
6秒前
6秒前
田様应助嘎嘎采纳,获得10
8秒前
等等发布了新的文献求助10
8秒前
8秒前
11秒前
练习者发布了新的文献求助10
12秒前
端庄向雁发布了新的文献求助10
12秒前
lbc发布了新的文献求助10
12秒前
沉默的红牛完成签到 ,获得积分10
13秒前
科目三应助小胡采纳,获得10
14秒前
烂漫梦容完成签到,获得积分10
14秒前
HAHA驳回了传奇3应助
14秒前
aloe发布了新的文献求助10
15秒前
大模型应助温暖幻桃采纳,获得10
16秒前
16秒前
16秒前
CC发布了新的文献求助10
19秒前
19秒前
天天快乐应助clamon采纳,获得10
20秒前
鄢懋卿发布了新的文献求助10
21秒前
归海含烟完成签到,获得积分10
23秒前
24秒前
24秒前
共享精神应助aloe采纳,获得10
24秒前
Orange应助厂里打工人采纳,获得10
27秒前
CodeCraft应助叶远望采纳,获得10
27秒前
迅速大山发布了新的文献求助20
28秒前
闪闪乘风完成签到,获得积分10
28秒前
科研通AI5应助fmx采纳,获得10
28秒前
纯真冰棍发布了新的文献求助30
28秒前
29秒前
鄢懋卿完成签到,获得积分10
29秒前
伶俐的高烽完成签到 ,获得积分10
30秒前
30秒前
30秒前
31秒前
32秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735644
求助须知:如何正确求助?哪些是违规求助? 3279426
关于积分的说明 10015198
捐赠科研通 2996127
什么是DOI,文献DOI怎么找? 1643895
邀请新用户注册赠送积分活动 781551
科研通“疑难数据库(出版商)”最低求助积分说明 749423