化学
Knoevenagel冷凝
单体
催化作用
共价键
堆积
高分子化学
苯甲酸
缩合反应
有机化学
组合化学
聚合物
作者
Shuai Bi,Fancheng Meng,Dongqing Wu,Fan Zhang
摘要
Reticular chemistry based on thermodynamically controlled linking modes and numerous organic building blocks has constituted versatile crystalline frameworks in molecular-level precision. However, vinylene-linked covalent organic frameworks (COFs) are still quite far from flexible tailoring in either their structures or topologies, due to the lack of monomers with sufficient activities. Herein, we establish a strategy to synthesize vinylene-linked COFs via Knoevenagel condensation between a tetratopic monomer 2,2',6,6'-tetramethyl-4,4'-bipyridine (TMBP) and linear aromatic dialdehydes in a mixed solvent of benzoic anhydride and benzoic acid. Mechanistic investigation suggests that the condensation was promoted by a pyridine self-catalyzed benzoylation upon the cleavage of benzoic anhydride solvent molecules. The layered structures of the resultant COFs are highly crystallized into orthorhombic lattices with vertically aligned AA stacking modes, delivering high surface areas up to 1560 m2 g-1. The π-extended conjugated skeletons comprising para-bipyridyl units and vinylene linkages endow these COFs with substantial semiconducting properties, releasing visible-light-stimulated catalytic activity in water-splitting hydrogen evolution with a rate as high as 3230 μmol g-1 h-1.
科研通智能强力驱动
Strongly Powered by AbleSci AI