A high-performance stick-slip piezoelectric actuator achieved by using the double-stator cooperative motion mode (DCMM)

执行机构 定子 控制理论(社会学) 打滑(空气动力学) 线性 压电 工程类 声学 机械工程 计算机科学 物理 电子工程 电气工程 人工智能 控制(管理) 航空航天工程
作者
Yanwei Liu,Zhi Xu,Xuan Li,Wuxiang Sun,Hu Huang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:172: 108999-108999 被引量:19
标识
DOI:10.1016/j.ymssp.2022.108999
摘要

Backward motion commonly exists in stick–slip piezoelectric actuators, which deteriorates the comprehensive performances of the actuators and increases the motion nonlinearity. To further improve the comprehensive performances of stick–slip piezoelectric actuators by suppressing the backward motion, a stick–slip piezoelectric actuator working under the double-stator cooperative motion mode (DCMM) was proposed. The structure of the designed actuator and the working principle of the DCMM were addressed in detail. Subsequently, an experimental system was established to characterize the output performances of the designed actuator in terms of motion resolution, angular speed, vertical load, horizontal load, linearity of large-stroke, consistency of forward and reverse motions, and motion stability. Comparative experiments of the actuator operating under the DCMM and the single-stator traditional motion mode (STMM) demonstrated that every output performance of the designed actuator was significantly improved by using the DCMM. For example, the motion resolution was improved from 4.13 μrad to 1.77 μrad, the speed was increased to 1042.99 mrad/s, and the linearity of large-stroke reached 0.99997. Furthermore, compared with some other stick–slip piezoelectric actuators, the designed actuator was extremely competitive in each performance. Experimental results and comparative analysis confirm that using the DCMM, it is feasible to improve the comprehensive performances of actuators, which would broaden the application areas of stick–slip piezoelectric actuators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小刘应助cookie采纳,获得10
1秒前
2秒前
陌上花开完成签到,获得积分0
3秒前
3秒前
嘟嘟发布了新的文献求助10
3秒前
3秒前
4秒前
研一小刘完成签到,获得积分10
4秒前
善良的路灯完成签到,获得积分10
5秒前
uu发布了新的文献求助10
5秒前
6秒前
易烊千玺发布了新的文献求助10
7秒前
请叫我风吹麦浪应助HJJHJH采纳,获得20
7秒前
ZBN发布了新的文献求助10
7秒前
7秒前
善学以致用应助123采纳,获得10
9秒前
9秒前
10秒前
AFEUWOS01发布了新的文献求助30
10秒前
星辰大海应助Left采纳,获得10
10秒前
sansan发布了新的文献求助10
11秒前
哈哈哈完成签到,获得积分10
11秒前
科研通AI5应助DTT采纳,获得10
12秒前
12秒前
13秒前
坚强不言完成签到,获得积分10
13秒前
13秒前
小天应助善良的路灯采纳,获得30
14秒前
14秒前
脑洞疼应助yigu采纳,获得10
15秒前
15秒前
Hu完成签到 ,获得积分10
17秒前
liuyan432完成签到,获得积分10
17秒前
cc完成签到,获得积分10
17秒前
易烊千玺完成签到,获得积分20
17秒前
哒哒哒哒完成签到,获得积分10
17秒前
18秒前
李健应助陶醉觅夏采纳,获得10
19秒前
19秒前
独特凡松完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794