A high-performance stick-slip piezoelectric actuator achieved by using the double-stator cooperative motion mode (DCMM)

执行机构 定子 控制理论(社会学) 打滑(空气动力学) 线性 压电 工程类 声学 机械工程 计算机科学 物理 电子工程 电气工程 人工智能 控制(管理) 航空航天工程
作者
Yanwei Liu,Zhi Xu,Xuan Li,Wuxiang Sun,Hu Huang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:172: 108999-108999 被引量:19
标识
DOI:10.1016/j.ymssp.2022.108999
摘要

Backward motion commonly exists in stick–slip piezoelectric actuators, which deteriorates the comprehensive performances of the actuators and increases the motion nonlinearity. To further improve the comprehensive performances of stick–slip piezoelectric actuators by suppressing the backward motion, a stick–slip piezoelectric actuator working under the double-stator cooperative motion mode (DCMM) was proposed. The structure of the designed actuator and the working principle of the DCMM were addressed in detail. Subsequently, an experimental system was established to characterize the output performances of the designed actuator in terms of motion resolution, angular speed, vertical load, horizontal load, linearity of large-stroke, consistency of forward and reverse motions, and motion stability. Comparative experiments of the actuator operating under the DCMM and the single-stator traditional motion mode (STMM) demonstrated that every output performance of the designed actuator was significantly improved by using the DCMM. For example, the motion resolution was improved from 4.13 μrad to 1.77 μrad, the speed was increased to 1042.99 mrad/s, and the linearity of large-stroke reached 0.99997. Furthermore, compared with some other stick–slip piezoelectric actuators, the designed actuator was extremely competitive in each performance. Experimental results and comparative analysis confirm that using the DCMM, it is feasible to improve the comprehensive performances of actuators, which would broaden the application areas of stick–slip piezoelectric actuators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzy发布了新的文献求助10
2秒前
3秒前
科研小狗发布了新的文献求助10
5秒前
5秒前
5秒前
田様应助啦啦啦采纳,获得10
7秒前
权饱饱发布了新的文献求助10
8秒前
8秒前
semigreen发布了新的文献求助10
8秒前
Hello应助友好凌柏采纳,获得10
8秒前
8R60d8应助SYUE采纳,获得10
9秒前
10秒前
张健华完成签到 ,获得积分10
11秒前
小巧的水之完成签到,获得积分20
11秒前
Lucas应助权饱饱采纳,获得10
13秒前
qingfeng发布了新的文献求助10
13秒前
13秒前
14秒前
junsizzz发布了新的文献求助10
14秒前
张健华关注了科研通微信公众号
14秒前
15秒前
NexusExplorer应助Kevin采纳,获得30
17秒前
李健应助Wu采纳,获得10
18秒前
王小虎牙发布了新的文献求助10
19秒前
小蘑菇应助junsizzz采纳,获得10
19秒前
朴实山兰发布了新的文献求助10
20秒前
科研通AI2S应助翎儿响叮当采纳,获得20
20秒前
诶呀发布了新的文献求助20
21秒前
24秒前
dew完成签到,获得积分10
24秒前
上官若男应助可爱安筠采纳,获得10
24秒前
junsizzz完成签到,获得积分10
26秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
27秒前
淳于三问应助科研通管家采纳,获得10
27秒前
SciGPT应助阳光的中蓝采纳,获得10
27秒前
悦耳新竹应助科研通管家采纳,获得20
27秒前
Dr_Zhu完成签到,获得积分10
27秒前
脑洞疼应助科研通管家采纳,获得10
27秒前
sissiarno应助科研通管家采纳,获得100
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313781
求助须知:如何正确求助?哪些是违规求助? 2946137
关于积分的说明 8528534
捐赠科研通 2621703
什么是DOI,文献DOI怎么找? 1434028
科研通“疑难数据库(出版商)”最低求助积分说明 665112
邀请新用户注册赠送积分活动 650691