Bonding of SiO2 and SiO2 at Room Temperature Using Si Ultrathin Film

阳极连接 材料科学 退火(玻璃) 固体中的键合 直接结合 粘结强度 绝缘体(电) 金属键合 电极 复合材料 热压连接 示意图 金属 纳米技术 光电子学 电子工程 冶金 图层(电子) 化学 物理化学 工程类
作者
Jun Utsumi,Kensuke Ide,Yuko Ichiyanagi
出处
期刊:Meeting abstracts 卷期号:MA2016-02 (32): 2113-2113
标识
DOI:10.1149/ma2016-02/32/2113
摘要

In three-dimensional integration technology, the bonding of metal electrode and insulator hybrid interface is very important technique. The hybrid interface serves as both an electrical connection and mechanical bond. However, the bonding of these hybrid interfaces is a challenging issue. Since the conventional bonding process requires high-temperature annealing, there exist various problems such as thermal damage, low throughput, and low alignment accuracy. As the surface activated bonding (SAB) is a bonding method carried out at room or low temperatures [1], the bonding method is expected to solve these problems. By the SAB method, direct bonding metal materials such as Cu or Al is easy. However, it is very difficult to directly bond insulator materials such as SiO 2 or SiN [2], because these surfaces are rendered inactive immediately after being activated. We have reported on the bonding technique at room temperature using only Si ultrathin films for insulator materials, and we have shown that high bonding strength is achieved [3]. The surface of electrode is also covered with Si film by this bonding method. Thus, it is very important to reveal the influence of this Si film thickness on the SiO 2 /SiO 2 bonding. In this report, we have investigated the relationship between the SiO 2 /SiO 2 bonding strength and the thickness of Si ultrathin film. Figure 1 shows a schematic illustration of the bonding apparatus (Mitsubishi Heavy Industries, Ltd., MWB-08AX) used in this experiment. Surface activation is carried out by an Ar fast atom beam (FAB). In the normal SAB process, the upper and lower wafers are irradiated with the Ar-FAB at the same time. The bonding procedure which we propose for hybrid bonding is as follows. The one of bonding wafers is held by the electric static chuck (ESC), and Si blanket wafer is placed on the lower side as the sputtering target. First, only the lower wafer is irradiated with FAB1 (first irradiation) after activating electrode surface of the upper wafer. The blanket Si wafer is then exchanged with the other bonding wafer. Only the upper wafer is irradiated with FAB2 (second irradiation) after activating electrode surface of the lower wafer, and the Si film surface on the upper wafer is also etched by FAB2. A Si thin film is then deposited on the lower wafer surface. The upper wafer and the lower wafer are optically aligned and then bonded with high load. Figure 2 shows the relationship between the surface energy and the Si ultrathin film thickness for the bonding of Si blanket wafers (8 in) with a thermal oxide. Applied voltage and current of Ar beam source operated in these experiments were about 1.8 kV and 100 mA, respectively. The background vacuum pressure is about 2×10 -6 Pa. The surface energy of wafers was about 1 J/m 2 for thicker than about 3 nm. A cross-sectional TEM image of SiO 2 /SiO 2 bonding is shown in Fig. 3. The bonded wafers were treated with a FAB1 irradiation time of 5 min and a FAB2 irradiation time of 1 min. No micro voids were observed, and Si intermediate layer, of which the thickness is about 3nm, was seen at the bonding interface. In conclusion, we showed that high bonding strength was achieved in SiO2/SiO2 bonding with the Si film thickness of about 3 nm by this bonding method. Reference: [1] H. Takagi, K. Kikuchi, R. Maeda, T. R. Chung, and T. Suga, Appl. Phys. Lett. 68, 2222 (1996). [2] H. Takagi, R. Maeda, T. R. Chung, and T. Suga, Sensors and Actuators, A 70, 164 (1998). [3] J. Utsumi, K. Ide, and Y. Ichiyanagi, Jpn. J. Appl. Phys., 55, 026503 (2016). Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾志伟完成签到,获得积分10
刚刚
6S6完成签到,获得积分10
刚刚
Kawhichan完成签到,获得积分10
1秒前
愉快豪完成签到 ,获得积分10
1秒前
lucky完成签到 ,获得积分10
2秒前
外向可冥完成签到,获得积分10
2秒前
wyz完成签到,获得积分10
2秒前
001完成签到,获得积分10
2秒前
Orange应助你看起来还想吃采纳,获得10
3秒前
3秒前
小曹医生完成签到,获得积分10
3秒前
bclddmy完成签到,获得积分10
3秒前
司藤完成签到 ,获得积分10
4秒前
lzl008完成签到 ,获得积分10
4秒前
WENS完成签到,获得积分10
4秒前
bener完成签到,获得积分10
7秒前
qiongqiong完成签到 ,获得积分10
7秒前
孤独星月发布了新的文献求助10
7秒前
板凳板凳完成签到 ,获得积分10
7秒前
南攻完成签到,获得积分10
8秒前
9秒前
东风完成签到,获得积分10
12秒前
12秒前
西西完成签到,获得积分10
12秒前
12秒前
高级后勤完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
17秒前
byby完成签到,获得积分10
18秒前
19秒前
BLAZe完成签到 ,获得积分10
19秒前
sqf1209完成签到,获得积分10
20秒前
ywindm完成签到,获得积分10
20秒前
yywang完成签到 ,获得积分10
21秒前
zeannezg完成签到 ,获得积分10
22秒前
23秒前
枫糖叶落完成签到,获得积分10
25秒前
Lucky.完成签到 ,获得积分0
26秒前
lululu完成签到 ,获得积分10
28秒前
知性的夏槐完成签到 ,获得积分10
28秒前
哈哈李完成签到,获得积分10
29秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584850
求助须知:如何正确求助?哪些是违规求助? 4668735
关于积分的说明 14771737
捐赠科研通 4616005
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590