已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Bonding of SiO2 and SiO2 at Room Temperature Using Si Ultrathin Film

阳极连接 材料科学 退火(玻璃) 固体中的键合 直接结合 粘结强度 绝缘体(电) 金属键合 电极 复合材料 热压连接 示意图 金属 纳米技术 光电子学 电子工程 冶金 图层(电子) 化学 物理化学 工程类
作者
Jun Utsumi,Kensuke Ide,Yuko Ichiyanagi
出处
期刊:Meeting abstracts 卷期号:MA2016-02 (32): 2113-2113
标识
DOI:10.1149/ma2016-02/32/2113
摘要

In three-dimensional integration technology, the bonding of metal electrode and insulator hybrid interface is very important technique. The hybrid interface serves as both an electrical connection and mechanical bond. However, the bonding of these hybrid interfaces is a challenging issue. Since the conventional bonding process requires high-temperature annealing, there exist various problems such as thermal damage, low throughput, and low alignment accuracy. As the surface activated bonding (SAB) is a bonding method carried out at room or low temperatures [1], the bonding method is expected to solve these problems. By the SAB method, direct bonding metal materials such as Cu or Al is easy. However, it is very difficult to directly bond insulator materials such as SiO 2 or SiN [2], because these surfaces are rendered inactive immediately after being activated. We have reported on the bonding technique at room temperature using only Si ultrathin films for insulator materials, and we have shown that high bonding strength is achieved [3]. The surface of electrode is also covered with Si film by this bonding method. Thus, it is very important to reveal the influence of this Si film thickness on the SiO 2 /SiO 2 bonding. In this report, we have investigated the relationship between the SiO 2 /SiO 2 bonding strength and the thickness of Si ultrathin film. Figure 1 shows a schematic illustration of the bonding apparatus (Mitsubishi Heavy Industries, Ltd., MWB-08AX) used in this experiment. Surface activation is carried out by an Ar fast atom beam (FAB). In the normal SAB process, the upper and lower wafers are irradiated with the Ar-FAB at the same time. The bonding procedure which we propose for hybrid bonding is as follows. The one of bonding wafers is held by the electric static chuck (ESC), and Si blanket wafer is placed on the lower side as the sputtering target. First, only the lower wafer is irradiated with FAB1 (first irradiation) after activating electrode surface of the upper wafer. The blanket Si wafer is then exchanged with the other bonding wafer. Only the upper wafer is irradiated with FAB2 (second irradiation) after activating electrode surface of the lower wafer, and the Si film surface on the upper wafer is also etched by FAB2. A Si thin film is then deposited on the lower wafer surface. The upper wafer and the lower wafer are optically aligned and then bonded with high load. Figure 2 shows the relationship between the surface energy and the Si ultrathin film thickness for the bonding of Si blanket wafers (8 in) with a thermal oxide. Applied voltage and current of Ar beam source operated in these experiments were about 1.8 kV and 100 mA, respectively. The background vacuum pressure is about 2×10 -6 Pa. The surface energy of wafers was about 1 J/m 2 for thicker than about 3 nm. A cross-sectional TEM image of SiO 2 /SiO 2 bonding is shown in Fig. 3. The bonded wafers were treated with a FAB1 irradiation time of 5 min and a FAB2 irradiation time of 1 min. No micro voids were observed, and Si intermediate layer, of which the thickness is about 3nm, was seen at the bonding interface. In conclusion, we showed that high bonding strength was achieved in SiO2/SiO2 bonding with the Si film thickness of about 3 nm by this bonding method. Reference: [1] H. Takagi, K. Kikuchi, R. Maeda, T. R. Chung, and T. Suga, Appl. Phys. Lett. 68, 2222 (1996). [2] H. Takagi, R. Maeda, T. R. Chung, and T. Suga, Sensors and Actuators, A 70, 164 (1998). [3] J. Utsumi, K. Ide, and Y. Ichiyanagi, Jpn. J. Appl. Phys., 55, 026503 (2016). Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常馒头完成签到 ,获得积分10
1秒前
随机科研完成签到,获得积分10
2秒前
2秒前
松树顶上鹧鸪鸣完成签到,获得积分10
2秒前
zero发布了新的文献求助30
3秒前
3秒前
戴鹿角王冠的拉斯特完成签到,获得积分10
3秒前
情怀应助汪姝采纳,获得10
3秒前
Haoru完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
7秒前
儒雅的菠萝完成签到 ,获得积分10
8秒前
爆米花应助科研通管家采纳,获得10
10秒前
10秒前
钮祜禄萱完成签到 ,获得积分10
11秒前
14秒前
动听钧完成签到,获得积分10
16秒前
Zyc完成签到 ,获得积分10
27秒前
桐桐应助KYHNY采纳,获得10
29秒前
Lucas应助DaiLinxi采纳,获得30
29秒前
32秒前
32秒前
34秒前
holland完成签到 ,获得积分10
34秒前
orixero应助凯圣王采纳,获得10
35秒前
nn666发布了新的文献求助10
37秒前
赵睿老婆发布了新的文献求助10
38秒前
yoyo完成签到 ,获得积分10
39秒前
公西凝芙发布了新的文献求助10
39秒前
微笑的手机完成签到 ,获得积分10
40秒前
简单小懒虫完成签到 ,获得积分10
40秒前
haocong完成签到 ,获得积分10
40秒前
英勇的梨愁完成签到 ,获得积分10
41秒前
42秒前
ycp完成签到,获得积分10
43秒前
凯圣王完成签到,获得积分10
44秒前
46秒前
逆天大脚完成签到,获得积分10
46秒前
鱼木完成签到,获得积分10
47秒前
sunshine发布了新的文献求助10
47秒前
xiawanren00完成签到,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639400
求助须知:如何正确求助?哪些是违规求助? 4748007
关于积分的说明 15006238
捐赠科研通 4797572
什么是DOI,文献DOI怎么找? 2563542
邀请新用户注册赠送积分活动 1522544
关于科研通互助平台的介绍 1482258