Virtual reality for car-detailing skill development: Learning outcomes of procedural accuracy and performance quality predicted by VR self-efficacy, VR using anxiety, VR learning interest and flow experience

虚拟现实 心理学 计算机科学 焦虑 人机交互 质量(理念) 认识论 精神科 哲学
作者
Kai‐Hsin Tai,Jon‐Chao Hong,Chi-Ruei Tsai,Chuangxin Lin,Yi-Hsuan Hung
出处
期刊:Computers & education [Elsevier]
卷期号:182: 104458-104458 被引量:42
标识
DOI:10.1016/j.compedu.2022.104458
摘要

While virtual reality (VR) training has been used in many examples of specialized skills training, its learning effect has also been explored with a focus on gross motor performance. Using VR can develop technical students' procedural knowledge in a safe environment while also saving the real materials, which is an essential issue of sustainability. However, the procedural accuracy and performance quality of learning outcomes of practicing VR have not been extensively examined. To address this gap, the present study designed VR for car detailing to explore how two types of learning outcomes could be predicted by students' self-efficacy that drives their learning interest and situational anxiety mediated by flow experience while practicing with VR. Based on a single group quasi-experiment study, the learning outcome tests were administered in the first, second, and fifth weeks after four rounds of practice to 143 technical students who had undergone VR car-detailing training. Data were subjected to confirmatory factor analysis with structural equation modeling. Results revealed that when VR was used for car-detailing training, the learning outcomes of procedural accuracy and performance quality could be predicted by participants' flow experience. Learners’ flow experience could be positively predicted by VR learning interest and VR using anxiety. Lastly, VR self-efficacy was positively related to VR learning interest, but negatively related to VR using anxiety. It is expected that the results can be applied to other technical training designs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聚乙烯醇完成签到,获得积分10
刚刚
2018夏之旅完成签到 ,获得积分10
1秒前
陈木子发布了新的文献求助10
1秒前
健忘谷秋关注了科研通微信公众号
2秒前
善学以致用应助wsws采纳,获得10
2秒前
田様应助iia采纳,获得10
2秒前
lxgz完成签到 ,获得积分10
3秒前
jorjames完成签到,获得积分10
3秒前
陈静发布了新的文献求助10
3秒前
breath完成签到,获得积分10
3秒前
3秒前
Rin发布了新的文献求助10
3秒前
4秒前
HM发布了新的文献求助10
4秒前
邓佳鑫Alan应助meng采纳,获得10
4秒前
哈白发布了新的文献求助10
4秒前
5秒前
Ava应助Liar采纳,获得10
5秒前
6秒前
yoko完成签到,获得积分10
6秒前
浪麻麻完成签到 ,获得积分10
6秒前
淡然士晋完成签到,获得积分20
6秒前
Kayla完成签到,获得积分10
6秒前
sjkkdjs完成签到,获得积分10
6秒前
啦啦啦完成签到,获得积分10
7秒前
科研通AI5应助绝不延毕采纳,获得10
7秒前
7秒前
陈木子完成签到,获得积分10
8秒前
8秒前
王叮叮完成签到,获得积分10
8秒前
lemon完成签到 ,获得积分10
8秒前
8秒前
小吴完成签到,获得积分10
9秒前
123发布了新的文献求助10
10秒前
Liang应助机灵的颜演采纳,获得20
10秒前
小学生发布了新的文献求助10
10秒前
小董不懂发布了新的文献求助10
10秒前
wsws完成签到,获得积分10
10秒前
牛马关注了科研通微信公众号
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556812
求助须知:如何正确求助?哪些是违规求助? 3132276
关于积分的说明 9396184
捐赠科研通 2832349
什么是DOI,文献DOI怎么找? 1556749
邀请新用户注册赠送积分活动 726893
科研通“疑难数据库(出版商)”最低求助积分说明 716131