CNN-LSTM network-based damage detection approach for copper pipeline using laser ultrasonic scanning

计算机科学 管道(软件) 人工智能 卷积神经网络 信号(编程语言) 超声波传感器 激光扫描 模式识别(心理学) 激光器 特征(语言学) 特征提取 计算机视觉 声学 光学 哲学 物理 程序设计语言 语言学
作者
Liuwei Huang,Xiaobin Hong,Zhijing Yang,Yuan Liu,Bin Zhang
出处
期刊:Ultrasonics [Elsevier]
卷期号:121: 106685-106685 被引量:55
标识
DOI:10.1016/j.ultras.2022.106685
摘要

Copper pipeline is a commonly used industrial transmission pipeline. Nondestructive testing of copper pipeline early damage is very important. Laser scanning has attracted extensive attention because it can realize the visualization of guided wave propagation and non-contact on-line detection. However, the damage points detection in laser scanning imaging method rely on the difference between the damage points signals and surrounding normal points signals. This limits the applicability of laser scanning and may lead to inaccurate in large-area detection. Facing with such challenges, a damage detection method based on CNN-LSTM network is proposed for laser ultrasonic guided wave scanning detection in this paper, which can detect each scanning point signal without relying on the surrounding detection points signals. Firstly, the proposed data conversion algorithm is used to preprocess the laser scanning signals. Next, CNN-LSTM network is used to train the damage detection model. Four 1D Conv channels with different convolution kernel sizes and depths are designed in Convolutional Neural Network (CNN) module. The module can extract the signal time domain features. Then the features are input into the Long Short-Term Memory Network (LSTM) for feature extraction and classification. Finally, the CNN-LSTM is trained using the laser scanning detection data collected on the copper pipeline with crack and corrosion damages, and applied to detect the copper pipeline damage signal. At the same time, the state-of-the-art methods is compared with proposed method. The experimental results show that the detection accuracy of the method is 99.9%, 99.9%, 99.8% and 99.8% for copper pipeline 0.5 mm deep crack damage, penetrating crack damage, corrosion damage and inside crack damage, respectively. The damage location and size can be accurately detected by the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助研友_GZbV4Z采纳,获得30
刚刚
好奇小子ivy完成签到,获得积分10
1秒前
激动吃瓜的尔蓉完成签到,获得积分10
2秒前
赵维雪发布了新的文献求助10
2秒前
如意的纸飞机完成签到,获得积分20
2秒前
Owen应助紧张的梦岚采纳,获得10
2秒前
烟花应助Summeryz920采纳,获得10
2秒前
2秒前
杨森omg完成签到,获得积分10
3秒前
3秒前
lyy关闭了lyy文献求助
3秒前
兴奋鼠标完成签到,获得积分10
4秒前
蜜蜜发布了新的文献求助10
4秒前
4秒前
灿烂千阳完成签到,获得积分10
6秒前
lull发布了新的文献求助10
6秒前
dhdjdj应助轩辕一笑采纳,获得10
6秒前
山岛发布了新的文献求助10
6秒前
taxi完成签到,获得积分10
7秒前
果子爱学习完成签到 ,获得积分10
7秒前
7秒前
顾矜应助仇道罡采纳,获得10
7秒前
8秒前
xsc发布了新的文献求助10
8秒前
科目三应助科研通管家采纳,获得10
9秒前
张北北应助科研通管家采纳,获得10
9秒前
Charlotte应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
神勇青枫应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
小兰应助科研通管家采纳,获得30
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得30
10秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3231987
求助须知:如何正确求助?哪些是违规求助? 2878991
关于积分的说明 8208546
捐赠科研通 2546450
什么是DOI,文献DOI怎么找? 1375985
科研通“疑难数据库(出版商)”最低求助积分说明 647507
邀请新用户注册赠送积分活动 622675