亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CNN-LSTM network-based damage detection approach for copper pipeline using laser ultrasonic scanning

计算机科学 管道(软件) 人工智能 卷积神经网络 信号(编程语言) 超声波传感器 激光扫描 模式识别(心理学) 激光器 特征(语言学) 特征提取 计算机视觉 声学 光学 哲学 物理 程序设计语言 语言学
作者
Liuwei Huang,Xiaobin Hong,Zhijing Yang,Yuan Liu,Bin Zhang
出处
期刊:Ultrasonics [Elsevier BV]
卷期号:121: 106685-106685 被引量:74
标识
DOI:10.1016/j.ultras.2022.106685
摘要

Copper pipeline is a commonly used industrial transmission pipeline. Nondestructive testing of copper pipeline early damage is very important. Laser scanning has attracted extensive attention because it can realize the visualization of guided wave propagation and non-contact on-line detection. However, the damage points detection in laser scanning imaging method rely on the difference between the damage points signals and surrounding normal points signals. This limits the applicability of laser scanning and may lead to inaccurate in large-area detection. Facing with such challenges, a damage detection method based on CNN-LSTM network is proposed for laser ultrasonic guided wave scanning detection in this paper, which can detect each scanning point signal without relying on the surrounding detection points signals. Firstly, the proposed data conversion algorithm is used to preprocess the laser scanning signals. Next, CNN-LSTM network is used to train the damage detection model. Four 1D Conv channels with different convolution kernel sizes and depths are designed in Convolutional Neural Network (CNN) module. The module can extract the signal time domain features. Then the features are input into the Long Short-Term Memory Network (LSTM) for feature extraction and classification. Finally, the CNN-LSTM is trained using the laser scanning detection data collected on the copper pipeline with crack and corrosion damages, and applied to detect the copper pipeline damage signal. At the same time, the state-of-the-art methods is compared with proposed method. The experimental results show that the detection accuracy of the method is 99.9%, 99.9%, 99.8% and 99.8% for copper pipeline 0.5 mm deep crack damage, penetrating crack damage, corrosion damage and inside crack damage, respectively. The damage location and size can be accurately detected by the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助C17采纳,获得10
2秒前
动听衬衫应助科研通管家采纳,获得10
3秒前
动听衬衫应助科研通管家采纳,获得30
3秒前
科研通AI5应助机智冰姬采纳,获得10
12秒前
十三完成签到,获得积分20
16秒前
23秒前
漫漫发布了新的文献求助10
31秒前
32秒前
小张完成签到 ,获得积分10
33秒前
34秒前
35秒前
38秒前
现代CC完成签到 ,获得积分10
40秒前
科研通AI5应助漫漫采纳,获得10
41秒前
展锋发布了新的文献求助10
42秒前
陶醉元冬完成签到,获得积分10
43秒前
bkagyin应助爱听歌凤灵采纳,获得10
43秒前
英姑应助123采纳,获得10
46秒前
斯文败类应助奥黛丽悟空采纳,获得10
50秒前
52秒前
53秒前
56秒前
1分钟前
桐桐应助111采纳,获得10
1分钟前
1分钟前
爱听歌凤灵完成签到,获得积分10
1分钟前
今日发布了新的文献求助10
1分钟前
Lucas应助七色光采纳,获得10
1分钟前
充电宝应助彭蓬采纳,获得10
1分钟前
Splaink完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI5应助花骨头采纳,获得10
1分钟前
今日完成签到,获得积分10
1分钟前
蕊蕊应助奥黛丽悟空采纳,获得10
1分钟前
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
111发布了新的文献求助10
2分钟前
2分钟前
Owen应助xuan采纳,获得30
2分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5220743
求助须知:如何正确求助?哪些是违规求助? 4394021
关于积分的说明 13680050
捐赠科研通 4256994
什么是DOI,文献DOI怎么找? 2335881
邀请新用户注册赠送积分活动 1333500
关于科研通互助平台的介绍 1287918