CNN-LSTM network-based damage detection approach for copper pipeline using laser ultrasonic scanning

计算机科学 管道(软件) 人工智能 卷积神经网络 信号(编程语言) 超声波传感器 激光扫描 模式识别(心理学) 激光器 特征(语言学) 特征提取 计算机视觉 声学 光学 语言学 哲学 物理 程序设计语言
作者
Liuwei Huang,Xiaobin Hong,Zhijing Yang,Yuan Liu,Bin Zhang
出处
期刊:Ultrasonics [Elsevier BV]
卷期号:121: 106685-106685 被引量:62
标识
DOI:10.1016/j.ultras.2022.106685
摘要

Copper pipeline is a commonly used industrial transmission pipeline. Nondestructive testing of copper pipeline early damage is very important. Laser scanning has attracted extensive attention because it can realize the visualization of guided wave propagation and non-contact on-line detection. However, the damage points detection in laser scanning imaging method rely on the difference between the damage points signals and surrounding normal points signals. This limits the applicability of laser scanning and may lead to inaccurate in large-area detection. Facing with such challenges, a damage detection method based on CNN-LSTM network is proposed for laser ultrasonic guided wave scanning detection in this paper, which can detect each scanning point signal without relying on the surrounding detection points signals. Firstly, the proposed data conversion algorithm is used to preprocess the laser scanning signals. Next, CNN-LSTM network is used to train the damage detection model. Four 1D Conv channels with different convolution kernel sizes and depths are designed in Convolutional Neural Network (CNN) module. The module can extract the signal time domain features. Then the features are input into the Long Short-Term Memory Network (LSTM) for feature extraction and classification. Finally, the CNN-LSTM is trained using the laser scanning detection data collected on the copper pipeline with crack and corrosion damages, and applied to detect the copper pipeline damage signal. At the same time, the state-of-the-art methods is compared with proposed method. The experimental results show that the detection accuracy of the method is 99.9%, 99.9%, 99.8% and 99.8% for copper pipeline 0.5 mm deep crack damage, penetrating crack damage, corrosion damage and inside crack damage, respectively. The damage location and size can be accurately detected by the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助少敏敏采纳,获得10
刚刚
英姑应助罗拉采纳,获得10
2秒前
小爪冰凉发布了新的文献求助10
2秒前
2秒前
2秒前
苏孖发布了新的文献求助20
2秒前
Qi完成签到 ,获得积分10
3秒前
百事可乐完成签到 ,获得积分10
5秒前
李嘉欣发布了新的文献求助10
5秒前
小万完成签到,获得积分10
6秒前
Lucas应助开灯人和关灯人采纳,获得10
6秒前
怕孤独的冰淇淋完成签到,获得积分10
7秒前
禹与于发布了新的文献求助10
8秒前
persist发布了新的文献求助10
8秒前
向上发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
111完成签到,获得积分10
9秒前
10秒前
Heartlark完成签到,获得积分10
12秒前
14秒前
罗拉发布了新的文献求助10
14秒前
斯文懿轩完成签到 ,获得积分10
17秒前
向上完成签到,获得积分10
17秒前
旺仔牛奶糖完成签到,获得积分10
17秒前
顾矜应助卖萌的秋田采纳,获得10
17秒前
17秒前
糊涂的不尤完成签到 ,获得积分10
18秒前
18秒前
19秒前
Zzzzzzz完成签到 ,获得积分10
20秒前
bkagyin应助火星上的百川采纳,获得10
20秒前
yexu845发布了新的文献求助150
21秒前
23秒前
爱笑晓曼给爱笑晓曼的求助进行了留言
23秒前
木木应助禹与于采纳,获得20
25秒前
风雪丽人完成签到,获得积分10
26秒前
STZHEN完成签到,获得积分10
27秒前
29秒前
忆修完成签到,获得积分10
29秒前
星辰大海应助谢琉圭采纳,获得10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989378
求助须知:如何正确求助?哪些是违规求助? 3531442
关于积分的说明 11254002
捐赠科研通 3270126
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173