CNN-LSTM network-based damage detection approach for copper pipeline using laser ultrasonic scanning

计算机科学 管道(软件) 人工智能 卷积神经网络 信号(编程语言) 超声波传感器 激光扫描 模式识别(心理学) 激光器 特征(语言学) 特征提取 计算机视觉 声学 光学 哲学 物理 程序设计语言 语言学
作者
Liuwei Huang,Xiaobin Hong,Zhijing Yang,Yuan Liu,Bin Zhang
出处
期刊:Ultrasonics [Elsevier]
卷期号:121: 106685-106685 被引量:74
标识
DOI:10.1016/j.ultras.2022.106685
摘要

Copper pipeline is a commonly used industrial transmission pipeline. Nondestructive testing of copper pipeline early damage is very important. Laser scanning has attracted extensive attention because it can realize the visualization of guided wave propagation and non-contact on-line detection. However, the damage points detection in laser scanning imaging method rely on the difference between the damage points signals and surrounding normal points signals. This limits the applicability of laser scanning and may lead to inaccurate in large-area detection. Facing with such challenges, a damage detection method based on CNN-LSTM network is proposed for laser ultrasonic guided wave scanning detection in this paper, which can detect each scanning point signal without relying on the surrounding detection points signals. Firstly, the proposed data conversion algorithm is used to preprocess the laser scanning signals. Next, CNN-LSTM network is used to train the damage detection model. Four 1D Conv channels with different convolution kernel sizes and depths are designed in Convolutional Neural Network (CNN) module. The module can extract the signal time domain features. Then the features are input into the Long Short-Term Memory Network (LSTM) for feature extraction and classification. Finally, the CNN-LSTM is trained using the laser scanning detection data collected on the copper pipeline with crack and corrosion damages, and applied to detect the copper pipeline damage signal. At the same time, the state-of-the-art methods is compared with proposed method. The experimental results show that the detection accuracy of the method is 99.9%, 99.9%, 99.8% and 99.8% for copper pipeline 0.5 mm deep crack damage, penetrating crack damage, corrosion damage and inside crack damage, respectively. The damage location and size can be accurately detected by the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jojo完成签到 ,获得积分10
1秒前
Jay发布了新的文献求助10
2秒前
2秒前
zyn发布了新的文献求助10
2秒前
传奇3应助ei采纳,获得10
5秒前
7分运气完成签到,获得积分10
5秒前
MARIO发布了新的文献求助10
7秒前
小呆鹿完成签到,获得积分10
7秒前
天真的白凡完成签到 ,获得积分10
9秒前
YG完成签到,获得积分10
9秒前
9秒前
10秒前
QiJiLuLu完成签到,获得积分10
11秒前
无花果应助ATOM采纳,获得10
11秒前
Werner完成签到 ,获得积分10
11秒前
11秒前
12秒前
乐乐完成签到 ,获得积分10
12秒前
14秒前
初初见你发布了新的文献求助10
14秒前
Rui_Rui发布了新的文献求助10
15秒前
合适清完成签到,获得积分10
16秒前
自然幻竹完成签到,获得积分10
16秒前
渣渣凡完成签到,获得积分10
17秒前
automan发布了新的文献求助10
17秒前
18秒前
yang完成签到,获得积分10
19秒前
桑榆发布了新的文献求助10
20秒前
NexusExplorer应助LPP采纳,获得10
22秒前
香蕉觅云应助chiweiyoung采纳,获得10
22秒前
23秒前
24秒前
25秒前
25秒前
传奇3应助fredrica采纳,获得10
26秒前
橙橙完成签到 ,获得积分10
26秒前
jjyy应助zyl采纳,获得10
27秒前
halo发布了新的文献求助10
29秒前
工作简历发布了新的文献求助10
29秒前
哇咔哩啦完成签到,获得积分20
30秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339290
求助须知:如何正确求助?哪些是违规求助? 4476138
关于积分的说明 13930647
捐赠科研通 4371604
什么是DOI,文献DOI怎么找? 2401978
邀请新用户注册赠送积分活动 1394933
关于科研通互助平台的介绍 1366848