CNN-LSTM network-based damage detection approach for copper pipeline using laser ultrasonic scanning

计算机科学 管道(软件) 人工智能 卷积神经网络 信号(编程语言) 超声波传感器 激光扫描 模式识别(心理学) 激光器 特征(语言学) 特征提取 计算机视觉 声学 光学 语言学 哲学 物理 程序设计语言
作者
Liuwei Huang,Xiaobin Hong,Zhijing Yang,Yuan Liu,Bin Zhang
出处
期刊:Ultrasonics [Elsevier]
卷期号:121: 106685-106685 被引量:74
标识
DOI:10.1016/j.ultras.2022.106685
摘要

Copper pipeline is a commonly used industrial transmission pipeline. Nondestructive testing of copper pipeline early damage is very important. Laser scanning has attracted extensive attention because it can realize the visualization of guided wave propagation and non-contact on-line detection. However, the damage points detection in laser scanning imaging method rely on the difference between the damage points signals and surrounding normal points signals. This limits the applicability of laser scanning and may lead to inaccurate in large-area detection. Facing with such challenges, a damage detection method based on CNN-LSTM network is proposed for laser ultrasonic guided wave scanning detection in this paper, which can detect each scanning point signal without relying on the surrounding detection points signals. Firstly, the proposed data conversion algorithm is used to preprocess the laser scanning signals. Next, CNN-LSTM network is used to train the damage detection model. Four 1D Conv channels with different convolution kernel sizes and depths are designed in Convolutional Neural Network (CNN) module. The module can extract the signal time domain features. Then the features are input into the Long Short-Term Memory Network (LSTM) for feature extraction and classification. Finally, the CNN-LSTM is trained using the laser scanning detection data collected on the copper pipeline with crack and corrosion damages, and applied to detect the copper pipeline damage signal. At the same time, the state-of-the-art methods is compared with proposed method. The experimental results show that the detection accuracy of the method is 99.9%, 99.9%, 99.8% and 99.8% for copper pipeline 0.5 mm deep crack damage, penetrating crack damage, corrosion damage and inside crack damage, respectively. The damage location and size can be accurately detected by the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zarahn完成签到,获得积分10
1秒前
情怀应助欣喜芙采纳,获得10
2秒前
早早发布了新的文献求助10
2秒前
文艺香菱发布了新的文献求助10
2秒前
Augustines完成签到,获得积分10
2秒前
自然的剑封完成签到,获得积分10
3秒前
3秒前
limi发布了新的文献求助10
4秒前
newsl完成签到,获得积分10
4秒前
小崽总完成签到,获得积分10
5秒前
俭朴士晋完成签到,获得积分10
5秒前
零零柒完成签到 ,获得积分10
5秒前
aki发布了新的文献求助10
5秒前
小马甲应助dd采纳,获得10
6秒前
6秒前
trier完成签到,获得积分10
6秒前
机智匪发布了新的文献求助10
7秒前
不会打架的熊完成签到,获得积分10
8秒前
heli发布了新的文献求助10
10秒前
謓言发布了新的文献求助10
10秒前
dawn发布了新的文献求助30
11秒前
12秒前
不再选择完成签到,获得积分10
13秒前
13秒前
13秒前
浮游应助cuicui采纳,获得10
13秒前
aki完成签到,获得积分10
14秒前
酷酷安珊完成签到,获得积分10
16秒前
18秒前
dd发布了新的文献求助10
18秒前
123完成签到 ,获得积分10
19秒前
La完成签到 ,获得积分10
19秒前
qimingran完成签到,获得积分10
20秒前
123完成签到,获得积分10
20秒前
20秒前
奋斗老鼠完成签到,获得积分20
21秒前
Felicity完成签到 ,获得积分10
21秒前
21秒前
cc关闭了cc文献求助
22秒前
缥缈的醉山完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5350838
求助须知:如何正确求助?哪些是违规求助? 4484158
关于积分的说明 13958205
捐赠科研通 4383562
什么是DOI,文献DOI怎么找? 2408471
邀请新用户注册赠送积分活动 1401068
关于科研通互助平台的介绍 1374476