CNN-LSTM network-based damage detection approach for copper pipeline using laser ultrasonic scanning

计算机科学 管道(软件) 人工智能 卷积神经网络 信号(编程语言) 超声波传感器 激光扫描 模式识别(心理学) 激光器 特征(语言学) 特征提取 计算机视觉 声学 光学 哲学 物理 程序设计语言 语言学
作者
Liuwei Huang,Xiaobin Hong,Zhijing Yang,Yuan Liu,Bin Zhang
出处
期刊:Ultrasonics [Elsevier BV]
卷期号:121: 106685-106685 被引量:62
标识
DOI:10.1016/j.ultras.2022.106685
摘要

Copper pipeline is a commonly used industrial transmission pipeline. Nondestructive testing of copper pipeline early damage is very important. Laser scanning has attracted extensive attention because it can realize the visualization of guided wave propagation and non-contact on-line detection. However, the damage points detection in laser scanning imaging method rely on the difference between the damage points signals and surrounding normal points signals. This limits the applicability of laser scanning and may lead to inaccurate in large-area detection. Facing with such challenges, a damage detection method based on CNN-LSTM network is proposed for laser ultrasonic guided wave scanning detection in this paper, which can detect each scanning point signal without relying on the surrounding detection points signals. Firstly, the proposed data conversion algorithm is used to preprocess the laser scanning signals. Next, CNN-LSTM network is used to train the damage detection model. Four 1D Conv channels with different convolution kernel sizes and depths are designed in Convolutional Neural Network (CNN) module. The module can extract the signal time domain features. Then the features are input into the Long Short-Term Memory Network (LSTM) for feature extraction and classification. Finally, the CNN-LSTM is trained using the laser scanning detection data collected on the copper pipeline with crack and corrosion damages, and applied to detect the copper pipeline damage signal. At the same time, the state-of-the-art methods is compared with proposed method. The experimental results show that the detection accuracy of the method is 99.9%, 99.9%, 99.8% and 99.8% for copper pipeline 0.5 mm deep crack damage, penetrating crack damage, corrosion damage and inside crack damage, respectively. The damage location and size can be accurately detected by the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
赵永斌发布了新的文献求助10
刚刚
lily000完成签到,获得积分10
刚刚
脑洞疼应助wyx采纳,获得10
刚刚
毛绒绒窝铺完成签到,获得积分10
1秒前
kk完成签到,获得积分10
1秒前
profit完成签到 ,获得积分10
1秒前
科研通AI5应助糊涂涂采纳,获得30
1秒前
小二郎应助curlycai采纳,获得10
1秒前
潇洒毒娘发布了新的文献求助10
1秒前
爆米花应助现实的问玉采纳,获得10
2秒前
DT发布了新的文献求助10
2秒前
2秒前
gwentea完成签到,获得积分20
3秒前
pwy发布了新的文献求助10
3秒前
Owen应助阿鸢采纳,获得20
3秒前
玛卡巴卡发布了新的文献求助10
4秒前
123131发布了新的文献求助10
4秒前
略微妙蛙完成签到,获得积分10
4秒前
出轨的妻子完成签到 ,获得积分10
4秒前
5秒前
6秒前
情怀应助自由的白玉采纳,获得10
6秒前
6秒前
7秒前
cbf完成签到 ,获得积分10
7秒前
7秒前
Cjw完成签到,获得积分10
7秒前
明亮飞双完成签到,获得积分10
8秒前
i2z发布了新的文献求助10
8秒前
青黄完成签到,获得积分10
9秒前
奋斗的猪完成签到 ,获得积分10
9秒前
9秒前
yc完成签到,获得积分10
9秒前
英俊的铭应助123131采纳,获得10
9秒前
历历历历完成签到 ,获得积分10
9秒前
9秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403