已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CNN-LSTM network-based damage detection approach for copper pipeline using laser ultrasonic scanning

计算机科学 管道(软件) 人工智能 卷积神经网络 信号(编程语言) 超声波传感器 激光扫描 模式识别(心理学) 激光器 特征(语言学) 特征提取 计算机视觉 声学 光学 哲学 物理 程序设计语言 语言学
作者
Liuwei Huang,Xiaobin Hong,Zhijing Yang,Yuan Liu,Bin Zhang
出处
期刊:Ultrasonics [Elsevier]
卷期号:121: 106685-106685 被引量:74
标识
DOI:10.1016/j.ultras.2022.106685
摘要

Copper pipeline is a commonly used industrial transmission pipeline. Nondestructive testing of copper pipeline early damage is very important. Laser scanning has attracted extensive attention because it can realize the visualization of guided wave propagation and non-contact on-line detection. However, the damage points detection in laser scanning imaging method rely on the difference between the damage points signals and surrounding normal points signals. This limits the applicability of laser scanning and may lead to inaccurate in large-area detection. Facing with such challenges, a damage detection method based on CNN-LSTM network is proposed for laser ultrasonic guided wave scanning detection in this paper, which can detect each scanning point signal without relying on the surrounding detection points signals. Firstly, the proposed data conversion algorithm is used to preprocess the laser scanning signals. Next, CNN-LSTM network is used to train the damage detection model. Four 1D Conv channels with different convolution kernel sizes and depths are designed in Convolutional Neural Network (CNN) module. The module can extract the signal time domain features. Then the features are input into the Long Short-Term Memory Network (LSTM) for feature extraction and classification. Finally, the CNN-LSTM is trained using the laser scanning detection data collected on the copper pipeline with crack and corrosion damages, and applied to detect the copper pipeline damage signal. At the same time, the state-of-the-art methods is compared with proposed method. The experimental results show that the detection accuracy of the method is 99.9%, 99.9%, 99.8% and 99.8% for copper pipeline 0.5 mm deep crack damage, penetrating crack damage, corrosion damage and inside crack damage, respectively. The damage location and size can be accurately detected by the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
NexusExplorer应助xxhh采纳,获得10
4秒前
5秒前
信含雨完成签到 ,获得积分10
6秒前
bemyselfelsa发布了新的文献求助10
6秒前
6秒前
7秒前
LAN发布了新的文献求助10
7秒前
雾昂完成签到,获得积分10
7秒前
FashionBoy应助等下完这场雨采纳,获得10
7秒前
8秒前
9秒前
丰富的绮波完成签到 ,获得积分10
10秒前
yanxun发布了新的文献求助10
11秒前
11秒前
周8相见发布了新的文献求助10
12秒前
圈圈黄完成签到,获得积分10
12秒前
12秒前
凉拌鱼腥草完成签到,获得积分10
13秒前
雾昂发布了新的文献求助10
13秒前
顾矜应助唐tang采纳,获得10
14秒前
李健的小迷弟应助李小猫采纳,获得10
16秒前
16秒前
20秒前
Sylvia_J完成签到 ,获得积分10
22秒前
李小小发布了新的文献求助10
22秒前
拾柒完成签到 ,获得积分10
23秒前
zeng完成签到 ,获得积分10
24秒前
24秒前
bkagyin应助LYQ680906采纳,获得10
27秒前
大个应助xjz采纳,获得10
30秒前
orixero应助缺粥采纳,获得10
32秒前
欢呼香完成签到 ,获得积分10
32秒前
34秒前
yjn关注了科研通微信公众号
34秒前
griz完成签到,获得积分10
35秒前
文适关注了科研通微信公众号
35秒前
37秒前
大渡河完成签到,获得积分10
38秒前
gaiyv发布了新的文献求助10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301069
求助须知:如何正确求助?哪些是违规求助? 4448794
关于积分的说明 13847045
捐赠科研通 4334647
什么是DOI,文献DOI怎么找? 2379764
邀请新用户注册赠送积分活动 1374828
关于科研通互助平台的介绍 1340630