Application of AMOGWO in Multi-Objective Optimal Allocation of Water Resources in Handan, China

分类 数学优化 粒子群优化 水资源 计算机科学 遗传算法 最优分配 资源配置 缺水 趋同(经济学) 多目标优化 运筹学 算法 数学 生态学 经济 经济增长 生物 计算机网络
作者
Li Su,Zhihong Yan,Jinxia Sha,Jing Gao,Bingqing Han,Bin Liu,Dan Xu,Yifan Chang,Yuhang Han,Zhiheng Xu,Bolun Sun
出处
期刊:Water [Multidisciplinary Digital Publishing Institute]
卷期号:14 (1): 63-63 被引量:1
标识
DOI:10.3390/w14010063
摘要

The reasonable allocation of water resources using different optimization technologies has received extensive attention. However, not all optimization algorithms are suitable for solving this problem because of its complexity. In this study, we applied an ameliorative multi-objective gray wolf optimizer (AMOGWO) to the problem. For AMOGWO, which is based on the multi-objective gray wolf optimizer, we improved the distance control parameter calculation method, added crowding degree for the archive, and optimized the selection mechanism for leader wolves. Subsequently, AMOGWO was used to solve the multi-objective optimal allocation of water resources in Handan, China, for 2035, with the maximum economic benefit and minimum social water shortage used as objective functions. The optimal results obtained indicate a total water demand in Handan of 2740.43 × 106 m3, total water distribution of 2442.23 × 106 m3, and water shortage of 298.20 × 106 m3, which is consistent with the principles of water resource utilization in Handan. Furthermore, comparison results indicate that AMOGWO has substantially enhanced convergence rates and precision compared to the non-dominated sorting genetic algorithm II and the multi-objective particle swarm optimization algorithm, demonstrating relatively high reliability and applicability. This study thus provides a new method for solving the multi-objective optimal allocation of water resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kacey完成签到,获得积分20
刚刚
1秒前
yunfeiyang完成签到,获得积分20
2秒前
旺旺仔完成签到,获得积分10
2秒前
vc发布了新的文献求助10
2秒前
2秒前
zhengnan666完成签到,获得积分10
3秒前
111完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
zzz发布了新的文献求助10
4秒前
4秒前
4秒前
xiaobin完成签到 ,获得积分10
4秒前
脑洞疼应助小易采纳,获得10
5秒前
小~杰完成签到,获得积分10
6秒前
8秒前
於艳发布了新的文献求助10
8秒前
mavis完成签到,获得积分10
8秒前
jerry完成签到 ,获得积分10
9秒前
9秒前
XY发布了新的文献求助10
9秒前
乐乐应助摩天大楼采纳,获得10
9秒前
10秒前
跳跃的代曼关注了科研通微信公众号
10秒前
10秒前
10秒前
kenny完成签到,获得积分10
11秒前
11秒前
12秒前
852应助饱满的妙梦采纳,获得10
13秒前
13秒前
ttttt完成签到,获得积分10
13秒前
14秒前
Diss发布了新的文献求助30
14秒前
智慧者完成签到,获得积分10
15秒前
Sylvia_J完成签到 ,获得积分10
15秒前
李健的小迷弟应助Three采纳,获得10
16秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952910
求助须知:如何正确求助?哪些是违规求助? 3498351
关于积分的说明 11091687
捐赠科研通 3229027
什么是DOI,文献DOI怎么找? 1785170
邀请新用户注册赠送积分活动 869214
科研通“疑难数据库(出版商)”最低求助积分说明 801377