Comparing and combining MRE, T1ρ, SWI, IVIM, and DCE‐MRI for the staging of liver fibrosis in rabbits: Assessment of a predictive model based on multiparametric MRI

盒内非相干运动 医学 阶段(地层学) 磁共振成像 核医学 接收机工作特性 磁共振弹性成像 纤维化 超声波 放射科 磁共振弥散成像 弹性成像 病理 内科学 生物 古生物学
作者
Zou Liqiu,Jinzhao Jiang,Hao Zhang,Wenxin Zhong,Min Xiao,Shunbao Xin,Yang Wang,Wei Xing
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:87 (5): 2424-2435 被引量:11
标识
DOI:10.1002/mrm.29126
摘要

Abstract Purpose To establish and validate an optimal predictive model based on multiparametric MRI for staging liver fibrosis (LF) in rabbits with magnetic resonance elastography (MRE), spin‐lattice relaxation time in the rotating frame (T1ρ imaging), SWI, intravoxel incoherent motion (IVIM), and DCE‐MRI. Methods The LF group included 120 rabbits induced by subcutaneous injections of carbon tetrachloride (CCl 4 ); 30 normal rabbits served as the control group. Multiparametric MRI was performed, including MRE, T1ρ, SWI, IVIM, and DCE‐MRI. The quantitative parameters were analyzed in two groups, with histopathological results serving as the reference standard. The diagnostic performance of multiparametric MRI and the predictive model established by multivariable logistic regression analysis were evaluated by receiver operating characteristic (ROC) curve analysis. Results In total, 32, 67, and 51 rabbits were histologically diagnosed as no fibrosis (stage F0), early‐stage LF (F1–F2), and advanced‐stage LF (F3–F4), respectively. The LF stages presented a strong correlation with liver stiffness (LS) on MRE ( r = 0.90), signal‐intensity ratio (SIR) on SWI ( r = −0.84), and K trans on DCE‐MRI ( r = 0.71; p < 0.05 for all). The LS and SIR parameters had higher AUC values for distinguishing early‐stage LF from both no fibrosis (0.94 and 0.93, respectively) and advanced‐stage LF (0.95 and 0.87, respectively). The predictive model showed a slightly higher AUC value of 0.97 (0.90–0.99) than LS and SIR in distinguishing early‐stage LF from no fibrosis ( p > 0.05), a significantly higher AUC value of 0.98 (0.93–0.99) than the SIR in distinguishing early‐stage from advanced‐stage LF ( p < 0.05). Conclusion SWI, DCE‐MRI, and MRE in particular showed improved performance for LF diagnosis and stage. The predictive model based on multiparametric MRI was found to further enhance diagnostic accuracy and could serve as an excellent imaging tool for staging LF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助独特翠丝采纳,获得10
刚刚
mydays关注了科研通微信公众号
刚刚
爱笑的大白菜完成签到 ,获得积分20
刚刚
Ava应助乐观的颦采纳,获得10
1秒前
1秒前
1秒前
2秒前
Xltox完成签到,获得积分10
3秒前
3秒前
科研通AI5应助海姆达尔采纳,获得10
3秒前
科研通AI5应助海姆达尔采纳,获得10
3秒前
HMONEY应助海姆达尔采纳,获得10
3秒前
科研通AI5应助海姆达尔采纳,获得10
3秒前
香蕉觅云应助海姆达尔采纳,获得10
3秒前
汉堡包应助海姆达尔采纳,获得10
3秒前
Xiaoxiao应助海姆达尔采纳,获得10
4秒前
科研通AI5应助海姆达尔采纳,获得10
4秒前
科研通AI5应助海姆达尔采纳,获得20
4秒前
HMONEY应助海姆达尔采纳,获得10
4秒前
如此完成签到,获得积分10
6秒前
无为发布了新的文献求助10
6秒前
7秒前
国家一级大冤种完成签到,获得积分10
7秒前
9秒前
风趣的靖雁完成签到 ,获得积分10
9秒前
大个应助小学生学免疫采纳,获得10
12秒前
厄页石页完成签到,获得积分10
12秒前
12秒前
Hello应助海姆达尔采纳,获得10
13秒前
科研通AI5应助海姆达尔采纳,获得10
13秒前
脑洞疼应助海姆达尔采纳,获得30
13秒前
科研通AI5应助海姆达尔采纳,获得10
13秒前
Xiaoxiao应助海姆达尔采纳,获得10
13秒前
pluto应助海姆达尔采纳,获得10
13秒前
顾矜应助海姆达尔采纳,获得10
13秒前
HEIKU应助海姆达尔采纳,获得10
13秒前
科研通AI5应助海姆达尔采纳,获得10
13秒前
斯文败类应助海姆达尔采纳,获得10
13秒前
14秒前
东东发布了新的文献求助10
16秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740956
求助须知:如何正确求助?哪些是违规求助? 3283797
关于积分的说明 10036810
捐赠科研通 3000526
什么是DOI,文献DOI怎么找? 1646584
邀请新用户注册赠送积分活动 783787
科研通“疑难数据库(出版商)”最低求助积分说明 750427