已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A spectral grouping-based deep learning model for haze removal of hyperspectral images

高光谱成像 薄雾 计算机科学 人工智能 特征(语言学) 块(置换群论) 遥感 模式识别(心理学) 计算机视觉 数学 地理 气象学 语言学 哲学 几何学
作者
Xiaofeng Ma,Qunming Wang,Xiaohua Tong
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:188: 177-189 被引量:21
标识
DOI:10.1016/j.isprsjprs.2022.04.007
摘要

Haze contamination is a common issue in optical remote sensing images, including hyperspectral images (HSIs), which can distort the spectral features of land cover objects. Over the last decades, although many haze removal solutions have been developed, very few studies have focused on haze removal of HSIs. Moreover, most of these methods cannot fully explore the abundant spectral information of HSIs in haze removal. To cope with the issues, a data driven method is proposed for haze removal of HSIs in this paper. Specifically, we design a spectral grouping network (SG-Net) to fully utilize the useful information in each spectral band during the reconstruction. To facilitate the relationship construction between hazy image and the corresponding haze-clear image, the proposed SG-Net first groups each HSI into several spectral subsets based on the intra-spectral correlations. Then, these subsets are convoluted in parallel with multiple branches for feature extraction. Furthermore, a novel attention block is designed to connect the adjacent branches for feature transmission, which can distill the useful information (e.g., uncontaminated information in longer wavelength bands) of each subset and assist the reconstruction of HSIs. Comprehensive experiments on both simulated and real haze HSIs showed that SG-Net is more accurate than seven state-of-the-art haze removal methods and is also more robust to different haze levels and shapes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
走着完成签到,获得积分10
1秒前
2秒前
科研小学生完成签到,获得积分10
3秒前
4秒前
xuzb发布了新的文献求助10
4秒前
4秒前
陌名发布了新的文献求助10
5秒前
脑洞疼应助耶耶耶耶宝采纳,获得10
6秒前
7秒前
Captain发布了新的文献求助10
7秒前
领导范儿应助wing采纳,获得10
7秒前
楼沁发布了新的文献求助10
8秒前
9秒前
模糊中正应助毛123采纳,获得80
9秒前
aaaaaa发布了新的文献求助10
10秒前
深情安青应助wing采纳,获得10
11秒前
11秒前
13秒前
温柔孤兰完成签到,获得积分10
14秒前
14秒前
15秒前
20秒前
22秒前
25秒前
27秒前
hehehehe完成签到,获得积分10
28秒前
28秒前
29秒前
mouxq发布了新的文献求助10
32秒前
熠旅发布了新的文献求助10
34秒前
汉堡包应助老迟到的灵煌采纳,获得10
34秒前
leolee完成签到 ,获得积分10
35秒前
0363完成签到,获得积分10
36秒前
Su发布了新的文献求助20
39秒前
John完成签到 ,获得积分10
39秒前
40秒前
41秒前
9℃完成签到 ,获得积分10
42秒前
慕青应助Twistti采纳,获得10
43秒前
Yuuuu发布了新的文献求助10
44秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261332
求助须知:如何正确求助?哪些是违规求助? 2902192
关于积分的说明 8319147
捐赠科研通 2572032
什么是DOI,文献DOI怎么找? 1397362
科研通“疑难数据库(出版商)”最低求助积分说明 653708
邀请新用户注册赠送积分活动 632217