Real-Time Delivery Time Forecasting and Promising in Online Retailing: When Will Your Package Arrive?

计算机科学 交付性能 集合(抽象数据类型) 运筹学 提前期 相关性(法律) 决策树 钥匙(锁) 时间点 数据挖掘 营销 业务 过程管理 工程类 哲学 美学 程序设计语言 法学 计算机安全 政治学
作者
Nooshin Salari,Sheng Liu,Zuo‐Jun Max Shen
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:24 (3): 1421-1436 被引量:28
标识
DOI:10.1287/msom.2022.1081
摘要

Problem definition: Providing fast and reliable delivery services is key to running a successful online retail business. To achieve a better delivery time guarantee policy, we study how to estimate and promise delivery time for new customer orders in real time. Academic/practical relevance: Delivery time promising is critical to managing customer expectations and improving customer satisfaction. Simply overpromising or underpromising is undesirable because of the negative impacts on short-/long-term sales. To the best of our knowledge, we are the first to develop a data-driven framework to predict the distribution of order delivery time and set promised delivery time to customers in a cost-effective way. Methodology: We apply and extend tree-based models to generate distributional forecasts by exploiting the complicated relationship between delivery time and relevant operational predictors. To account for the cost-sensitive decision-making problem structure, we develop a new split rule for quantile regression forests that incorporates an asymmetric loss function in split point selection. We further propose a cost-sensitive decision rule to decide the promised delivery day from the predicted distribution. Results: Our decision rule is proven to be optimal given certain cost structures. Tested on a real-world data set shared from JD.com, our proposed machine learning–based models deliver superior forecasting performance. In addition, we demonstrate that our framework has the potential to provide better promised delivery time in terms of sales, cost, and accuracy as compared with the conventional promised time set by JD.com. Specifically, our simulation results indicate that the proposed delivery time promise policy can improve the sales volume by 6.1% over the current policy. Managerial implications: Through a more accurate estimation of the delivery time distribution, online retailers can strategically set the promised time to maximize customer satisfaction and boost sales. Our data-driven framework reveals the importance of modeling fulfillment operations in delivery time forecasting and integrating the decision-making problem structure with the forecasting model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
义气语儿完成签到,获得积分10
4秒前
luster完成签到 ,获得积分10
4秒前
4秒前
SSS完成签到 ,获得积分10
5秒前
聪明的云完成签到 ,获得积分10
8秒前
8秒前
自信夜蓉发布了新的文献求助10
9秒前
9秒前
来自DF的小白完成签到,获得积分10
10秒前
10秒前
酷波er应助忆安采纳,获得10
12秒前
QiaoHL完成签到 ,获得积分10
12秒前
12秒前
守护最好的坤坤完成签到,获得积分10
14秒前
嗯哼应助AnnaTian采纳,获得20
14秒前
15秒前
15秒前
gdh发布了新的文献求助10
15秒前
poplar完成签到,获得积分10
16秒前
16秒前
研友_nE1dDn发布了新的文献求助20
17秒前
安笙完成签到 ,获得积分10
17秒前
17秒前
搞科研的小李同学完成签到 ,获得积分10
18秒前
song发布了新的文献求助10
20秒前
20秒前
Jiling发布了新的文献求助10
21秒前
22秒前
小二郎应助白华苍松采纳,获得10
23秒前
忐忑的麦片完成签到,获得积分10
24秒前
冯冯完成签到 ,获得积分10
26秒前
26秒前
27秒前
忆安完成签到 ,获得积分10
27秒前
27秒前
当人不浪发布了新的文献求助10
27秒前
Dou完成签到,获得积分10
27秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212535
求助须知:如何正确求助?哪些是违规求助? 2861467
关于积分的说明 8128885
捐赠科研通 2527394
什么是DOI,文献DOI怎么找? 1361116
科研通“疑难数据库(出版商)”最低求助积分说明 643436
邀请新用户注册赠送积分活动 615753