Real-Time Delivery Time Forecasting and Promising in Online Retailing: When Will Your Package Arrive?

计算机科学 交付性能 集合(抽象数据类型) 运筹学 提前期 相关性(法律) 决策树 钥匙(锁) 时间点 数据挖掘 营销 业务 过程管理 工程类 哲学 美学 程序设计语言 法学 计算机安全 政治学
作者
Nooshin Salari,Sheng Liu,Zuo‐Jun Max Shen
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:24 (3): 1421-1436 被引量:45
标识
DOI:10.1287/msom.2022.1081
摘要

Problem definition: Providing fast and reliable delivery services is key to running a successful online retail business. To achieve a better delivery time guarantee policy, we study how to estimate and promise delivery time for new customer orders in real time. Academic/practical relevance: Delivery time promising is critical to managing customer expectations and improving customer satisfaction. Simply overpromising or underpromising is undesirable because of the negative impacts on short-/long-term sales. To the best of our knowledge, we are the first to develop a data-driven framework to predict the distribution of order delivery time and set promised delivery time to customers in a cost-effective way. Methodology: We apply and extend tree-based models to generate distributional forecasts by exploiting the complicated relationship between delivery time and relevant operational predictors. To account for the cost-sensitive decision-making problem structure, we develop a new split rule for quantile regression forests that incorporates an asymmetric loss function in split point selection. We further propose a cost-sensitive decision rule to decide the promised delivery day from the predicted distribution. Results: Our decision rule is proven to be optimal given certain cost structures. Tested on a real-world data set shared from JD.com, our proposed machine learning–based models deliver superior forecasting performance. In addition, we demonstrate that our framework has the potential to provide better promised delivery time in terms of sales, cost, and accuracy as compared with the conventional promised time set by JD.com. Specifically, our simulation results indicate that the proposed delivery time promise policy can improve the sales volume by 6.1% over the current policy. Managerial implications: Through a more accurate estimation of the delivery time distribution, online retailers can strategically set the promised time to maximize customer satisfaction and boost sales. Our data-driven framework reveals the importance of modeling fulfillment operations in delivery time forecasting and integrating the decision-making problem structure with the forecasting model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助木可采纳,获得10
1秒前
orixero应助wangjue采纳,获得10
2秒前
3秒前
liu完成签到,获得积分10
3秒前
Villanellel发布了新的文献求助50
4秒前
YJ888发布了新的文献求助10
4秒前
5秒前
HIT_C发布了新的文献求助30
7秒前
8秒前
9秒前
kkkkk完成签到,获得积分10
9秒前
三斤完成签到 ,获得积分20
9秒前
李茵发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
wyl发布了新的文献求助10
12秒前
13秒前
13秒前
小小小值钱完成签到,获得积分20
15秒前
wangjue发布了新的文献求助10
16秒前
17秒前
17秒前
木可发布了新的文献求助10
18秒前
18秒前
wyl完成签到,获得积分10
20秒前
汉堡包应助三斤采纳,获得10
21秒前
wangqiuhong发布了新的文献求助10
23秒前
24秒前
失眠的夜梦关注了科研通微信公众号
24秒前
今后应助HIT_C采纳,获得10
25秒前
今后应助SuperZzz采纳,获得10
26秒前
ZONG发布了新的文献求助10
28秒前
Nugget发布了新的文献求助10
29秒前
李茵完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
31秒前
汉堡包应助风趣的老太采纳,获得10
32秒前
DongWei95发布了新的文献求助30
34秒前
34秒前
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989406
求助须知:如何正确求助?哪些是违规求助? 3531522
关于积分的说明 11254187
捐赠科研通 3270174
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174