Real-Time Delivery Time Forecasting and Promising in Online Retailing: When Will Your Package Arrive?

计算机科学 交付性能 集合(抽象数据类型) 运筹学 提前期 相关性(法律) 决策树 钥匙(锁) 时间点 数据挖掘 营销 业务 过程管理 工程类 哲学 美学 程序设计语言 法学 计算机安全 政治学
作者
Nooshin Salari,Sheng Liu,Zuo‐Jun Max Shen
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:24 (3): 1421-1436 被引量:55
标识
DOI:10.1287/msom.2022.1081
摘要

Problem definition: Providing fast and reliable delivery services is key to running a successful online retail business. To achieve a better delivery time guarantee policy, we study how to estimate and promise delivery time for new customer orders in real time. Academic/practical relevance: Delivery time promising is critical to managing customer expectations and improving customer satisfaction. Simply overpromising or underpromising is undesirable because of the negative impacts on short-/long-term sales. To the best of our knowledge, we are the first to develop a data-driven framework to predict the distribution of order delivery time and set promised delivery time to customers in a cost-effective way. Methodology: We apply and extend tree-based models to generate distributional forecasts by exploiting the complicated relationship between delivery time and relevant operational predictors. To account for the cost-sensitive decision-making problem structure, we develop a new split rule for quantile regression forests that incorporates an asymmetric loss function in split point selection. We further propose a cost-sensitive decision rule to decide the promised delivery day from the predicted distribution. Results: Our decision rule is proven to be optimal given certain cost structures. Tested on a real-world data set shared from JD.com, our proposed machine learning–based models deliver superior forecasting performance. In addition, we demonstrate that our framework has the potential to provide better promised delivery time in terms of sales, cost, and accuracy as compared with the conventional promised time set by JD.com. Specifically, our simulation results indicate that the proposed delivery time promise policy can improve the sales volume by 6.1% over the current policy. Managerial implications: Through a more accurate estimation of the delivery time distribution, online retailers can strategically set the promised time to maximize customer satisfaction and boost sales. Our data-driven framework reveals the importance of modeling fulfillment operations in delivery time forecasting and integrating the decision-making problem structure with the forecasting model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蜡笔发布了新的文献求助30
1秒前
小跳鹅完成签到,获得积分10
1秒前
王丹靖完成签到 ,获得积分10
1秒前
1秒前
2秒前
Stone发布了新的文献求助10
2秒前
2秒前
will发布了新的文献求助10
3秒前
3秒前
默默的裘发布了新的文献求助10
3秒前
gsj完成签到 ,获得积分10
3秒前
3秒前
牛市棋手发布了新的文献求助10
4秒前
汩浥发布了新的文献求助10
4秒前
刘宇萌完成签到 ,获得积分10
4秒前
6秒前
6秒前
标致秋尽完成签到,获得积分10
7秒前
搜集达人应助yy采纳,获得30
7秒前
王王的狗子完成签到 ,获得积分0
8秒前
9秒前
研友_VZG7GZ应助紧张的毛衣采纳,获得10
9秒前
9秒前
现代安莲发布了新的文献求助10
9秒前
Japan发布了新的文献求助10
9秒前
小灰灰发布了新的文献求助10
10秒前
学术妙蛙种子完成签到,获得积分10
11秒前
11秒前
虚心梦秋完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
七七完成签到,获得积分10
13秒前
Hada_Guo发布了新的文献求助10
13秒前
13秒前
13秒前
无语的幻天完成签到,获得积分10
13秒前
ni完成签到,获得积分10
14秒前
别不开星发布了新的文献求助10
15秒前
必中完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646269
求助须知:如何正确求助?哪些是违规求助? 4770756
关于积分的说明 15034169
捐赠科研通 4805036
什么是DOI,文献DOI怎么找? 2569371
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812