Real-Time Delivery Time Forecasting and Promising in Online Retailing: When Will Your Package Arrive?

计算机科学 交付性能 集合(抽象数据类型) 运筹学 提前期 相关性(法律) 决策树 钥匙(锁) 时间点 数据挖掘 营销 业务 过程管理 工程类 哲学 美学 程序设计语言 法学 计算机安全 政治学
作者
Nooshin Salari,Sheng Liu,Zuo‐Jun Max Shen
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:24 (3): 1421-1436 被引量:45
标识
DOI:10.1287/msom.2022.1081
摘要

Problem definition: Providing fast and reliable delivery services is key to running a successful online retail business. To achieve a better delivery time guarantee policy, we study how to estimate and promise delivery time for new customer orders in real time. Academic/practical relevance: Delivery time promising is critical to managing customer expectations and improving customer satisfaction. Simply overpromising or underpromising is undesirable because of the negative impacts on short-/long-term sales. To the best of our knowledge, we are the first to develop a data-driven framework to predict the distribution of order delivery time and set promised delivery time to customers in a cost-effective way. Methodology: We apply and extend tree-based models to generate distributional forecasts by exploiting the complicated relationship between delivery time and relevant operational predictors. To account for the cost-sensitive decision-making problem structure, we develop a new split rule for quantile regression forests that incorporates an asymmetric loss function in split point selection. We further propose a cost-sensitive decision rule to decide the promised delivery day from the predicted distribution. Results: Our decision rule is proven to be optimal given certain cost structures. Tested on a real-world data set shared from JD.com, our proposed machine learning–based models deliver superior forecasting performance. In addition, we demonstrate that our framework has the potential to provide better promised delivery time in terms of sales, cost, and accuracy as compared with the conventional promised time set by JD.com. Specifically, our simulation results indicate that the proposed delivery time promise policy can improve the sales volume by 6.1% over the current policy. Managerial implications: Through a more accurate estimation of the delivery time distribution, online retailers can strategically set the promised time to maximize customer satisfaction and boost sales. Our data-driven framework reveals the importance of modeling fulfillment operations in delivery time forecasting and integrating the decision-making problem structure with the forecasting model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助一诺相许采纳,获得10
刚刚
刚刚
小巧谷波完成签到 ,获得积分10
1秒前
忧郁紫翠完成签到,获得积分10
1秒前
able完成签到,获得积分10
2秒前
兔子发布了新的文献求助10
5秒前
青青完成签到 ,获得积分10
7秒前
kangshuai完成签到,获得积分10
8秒前
汤圆完成签到 ,获得积分10
9秒前
强公子关注了科研通微信公众号
9秒前
量子星尘发布了新的文献求助10
10秒前
qxz完成签到,获得积分10
11秒前
清秀的仙人掌完成签到,获得积分10
13秒前
RayLam完成签到,获得积分10
13秒前
14秒前
以韓完成签到 ,获得积分10
14秒前
imica完成签到 ,获得积分10
15秒前
Diamond完成签到 ,获得积分10
15秒前
可耐的问柳完成签到 ,获得积分10
16秒前
HH关注了科研通微信公众号
18秒前
兔子完成签到,获得积分10
18秒前
18秒前
xxx完成签到 ,获得积分10
20秒前
ash发布了新的文献求助10
21秒前
科研通AI5应助哭泣笑柳采纳,获得10
21秒前
倾听阳光完成签到 ,获得积分10
22秒前
iPhone7跑GWAS完成签到,获得积分10
22秒前
chinbaor完成签到,获得积分10
24秒前
怡然猎豹完成签到,获得积分10
25秒前
songvv发布了新的文献求助10
25秒前
ash完成签到,获得积分10
25秒前
29秒前
shezhinicheng完成签到,获得积分10
29秒前
桃花不用开了完成签到 ,获得积分10
30秒前
futong发布了新的文献求助10
32秒前
张瑞雪完成签到 ,获得积分10
35秒前
666完成签到,获得积分10
36秒前
大模型应助大橙子采纳,获得10
36秒前
maclogos发布了新的文献求助10
37秒前
李燕完成签到,获得积分10
37秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022