Automated location of steel truss bridge damage using machine learning and raw strain sensor data

结构健康监测 计算机科学 桥(图论) 过程(计算) 动态时间归整 特征提取 原始数据 人工智能 桁架桥 桁架 机器学习 工程类 数据挖掘 结构工程 医学 内科学 程序设计语言 操作系统
作者
Fulvio Parisi,Agostino Marcello Mangini,Maria Pia Fanti,José M. Adam
出处
期刊:Automation in Construction [Elsevier]
卷期号:138: 104249-104249 被引量:32
标识
DOI:10.1016/j.autcon.2022.104249
摘要

Strategic major infrastructure ageing requires structural health monitoring usage to avoid critical safety issues and disasters. Machine Learning can be a valuable tool to automate the process of analysing raw monitoring data. Usually, frequency domain damage-sensitive features are extracted with data pre-processing procedures; thus these features are used as input for classification or regression problems. This paper describes a method of locating damage in steel truss railway bridges through machine learning classification tools, enabling automatic analysis of raw strain sensors signals without any pre-processing or preliminary feature extraction. Data were generated by simulating different damage scenarios with a finite element software, and then were processed by two machine learning classification tools: (a) the K-nearest Neighbours was adopted with the Dynamic Time Warping algorithm metric to select the most informative features; (b) a model suitable for high-dimensional data analysis, known as the Convolutional Neural Network, was then trained to classify strain sensors time series. The results indicate that the method applied can detect damages with an accuracy of 93% and is suitable for structural health monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hata完成签到,获得积分10
刚刚
Pangsj完成签到,获得积分10
1秒前
1秒前
青蛙旅行完成签到 ,获得积分10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
2秒前
小马甲应助mimi采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
雪白问兰应助科研通管家采纳,获得30
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
zzzzzz应助科研通管家采纳,获得20
2秒前
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
sidegate应助科研通管家采纳,获得10
2秒前
prosperp应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
li完成签到,获得积分10
2秒前
2秒前
mlml完成签到,获得积分10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
Zn应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
Zn应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
jimmy发布了新的文献求助10
3秒前
华仔应助hhh采纳,获得10
4秒前
hug完成签到,获得积分10
4秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672