Low-Rank Tensor Based Proximity Learning for Multi-View Clustering

聚类分析 成对比较 计算机科学 图形 秩(图论) 人工智能 代表(政治) 理论计算机科学 数据挖掘 机器学习 数学 组合数学 政治 政治学 法学
作者
Man-Sheng Chen,Chang‐Dong Wang,Jianhuang Lai
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:35 (5): 5076-5090 被引量:53
标识
DOI:10.1109/tkde.2022.3151861
摘要

Graph-oriented multi-view clustering methods have achieved impressive performances by employing relationships and complex structures hidden in multi-view data. However, most of them still suffer from the following two common problems. (1) They target at studying a common representation or pairwise correlations between views, neglecting the comprehensiveness and deeper higher-order correlations among multiple views. (2) The prior knowledge of view-specific representation can not be taken into account to obtain the consensus indicator graph in a unified graph construction and clustering framework. To deal with these problems, we propose a novel Low-rank Tensor Based Proximity Learning (LTBPL) approach for multi-view clustering, where multiple low-rank probability affinity matrices and consensus indicator graph reflecting the final performances are jointly studied in a unified framework. Specifically, multiple affinity representations are stacked in a low-rank constrained tensor to recover their comprehensiveness and higher-order correlations. Meanwhile, view-specific representation carrying different adaptive confidences is jointly linked with the consensus indicator graph. Extensive experiments on nine real-world datasets indicate the superiority of LTBPL compared with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莉莉丝发布了新的文献求助10
1秒前
苏满天完成签到 ,获得积分10
2秒前
不懈奋进应助虎头怪采纳,获得30
2秒前
良药完成签到,获得积分10
2秒前
onlooker完成签到 ,获得积分10
4秒前
善学以致用应助淡定海亦采纳,获得10
4秒前
风趣雅柏发布了新的文献求助10
5秒前
7秒前
9秒前
9秒前
猪猪hero应助阔达的寻菡采纳,获得10
14秒前
香蕉孤风发布了新的文献求助10
14秒前
番茄炒西红柿完成签到,获得积分10
14秒前
大模型应助莉莉丝采纳,获得10
15秒前
淡定海亦发布了新的文献求助10
15秒前
失眠锦程发布了新的文献求助10
15秒前
CipherSage应助fighting采纳,获得10
16秒前
aabb关注了科研通微信公众号
21秒前
H1998完成签到,获得积分10
22秒前
RC_Wang完成签到,获得积分0
25秒前
modesty完成签到,获得积分10
26秒前
28秒前
CodeCraft应助ZZZ采纳,获得10
29秒前
遇上就这样吧应助H1998采纳,获得30
29秒前
30秒前
王冬雪发布了新的社区帖子
31秒前
155发布了新的文献求助10
32秒前
32秒前
33秒前
35秒前
35秒前
36秒前
fighting发布了新的文献求助10
37秒前
38秒前
知白完成签到 ,获得积分10
38秒前
38秒前
modesty发布了新的文献求助10
38秒前
hsing发布了新的文献求助10
39秒前
40秒前
aabb发布了新的文献求助30
41秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952508
求助须知:如何正确求助?哪些是违规求助? 3497869
关于积分的说明 11089256
捐赠科研通 3228427
什么是DOI,文献DOI怎么找? 1784869
邀请新用户注册赠送积分活动 868943
科研通“疑难数据库(出版商)”最低求助积分说明 801309